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Abstract 

We study the effects of robot exposure on worker flows in 16 European countries between 2000-2017. 

Overall, we find small negative effects on job separations and no effects on job findings. We detect 

significant cross-country differences and find that labour costs are a major driver: the effects of robot 

exposure are generally larger in absolute terms in countries with relatively low or average levels of 

labour costs than in countries with high levels of labour costs. These effects are particularly 

pronounced for workers in occupations intensive in routine manual or routine cognitive tasks but are 

insignificant in occupations intensive in non-routine cognitive tasks. A counterfactual analysis suggests 

that robot adoption increased employment and reduced unemployment, especially in European 

countries with relatively low or average levels of labour costs, and that these effects were driven 

mainly by lower job separations. 
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1 Introduction  

The use of robots has multiplied during the last two decades. Between 2000 and 2017, robot exposure, 

as measured by the number of industrial robots per 1,000 workers, has quadrupled in Europe, and it 

has doubled in Germany, a European leader in robot adoption. In high-income countries, robot 

adoption has increased GDP, labour productivity, and wages (Graetz and Michaels, 2018). But it has 

also ignited fears, especially among policymakers and the general public, of considerable job losses.  

However, the international evidence on the employment effects of robot exposure is mixed. Robot 

adoption has reduced total employment in the US (Acemoglu and Restrepo, 2020) but not in other 

highly industrialised countries such as Germany or Japan (Adachi et al., 2022; Dauth et al., 2021). It 

also appears that the employment effects of robots may depend on the development level. Robot 

adoption was associated with a decline in employment shares of jobs intensive in routine manual tasks 

in high-income countries but not in emerging or transition economies (de Vries et al., 2020). The 

reasons for such cross-country differences and the labour market mechanisms behind the aggregate 

employment effects of automation remain largely unexplored.  

This paper fills this gap by investigating the impact of industrial robots on worker flows in Europe, 

paying particular attention to the role of labour costs for cross-country differences. We focus on 

worker flows as they constitute a key mechanism behind changes in employment and unemployment 

levels and are essential for worker welfare. For example, an adjustment to robots through changes in 

the job separation probability affects workers’ welfare very differently than an adjustment through 

changes in the job finding rate: while job separations, in particular firings, often lead to immediate and 

potentially long-lasting earnings losses, the job finding rate is an important determinant of 

unemployment duration, which in turn implies a gradual loss of human capital and deteriorating 

labour-market prospects. Therefore, optimal policy responses differ strongly between these two cases. 

Worker flows are also a common short term labour market indicator that reacts almost immediately 

to shocks (Bachmann and Felder, 2020; Elsby et al., 2012), in contrast to long-term employment 

changes which have been the focus of most previous literature on automation (Acemoglu and 

Restrepo, 2020; Dauth et al., 2021).  

We answer three main research questions: First, what was the effect of rising robot exposure on 

job separation and job finding rates in Europe, and what role did labour costs play in the observed 

cross-country differences? Second, how did the effects differ between worker groups? Third, how did 

automation-driven job findings and job separations contribute to changes in employment rates?  

To answer these questions, we estimate labour market transition probabilities from employment 

to unemployment (a proxy for job separations and, hence, for job stability) and from unemployment 

to employment (a proxy for job findings) in 16 European countries. We use individual-level data from 

the European Union Labour Force Survey (EU-LFS), combined with annual data on robot exposure by 

country and sector from the International Federation of Robotics (IFR). To account for potential 

endogeneity in robot adoption, we use a control-function approach; and, as an instrument, the average 

robot exposure in comparable countries, which has been applied by, e.g., Acemoglu and Restrepo 

(2019) and Dauth et al. (2021). We control for potential confounders, such as general investment, 

participation in global value chains and trade, and labour demand shocks. As our analysis takes place 

at the industry-occupation level, we capture direct effects at firms adopting robots and indirect effects 

through spillovers which could occur, for instance, through the reallocation of output and workers to 

firms adopting robots (Acemoglu et al., 2020). 

Conceptually, technological innovations can trigger a range of mechanisms beyond direct 

substitution of labour. They include reductions in prices and wages, new investments, introduction of 
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new products and market expansion, increases in incomes and sectoral reallocations which jointly have 

an a priori ambiguous impact on the labour market (Calvino and Virgillito, 2018; Pianta, 2006; Vivarelli, 

2014). While industrial robots seem to be a technology particularly conducive to labour substitution, 

their effects on employment and labour-market transitions are not clear-cut either. On the one hand, 

they can directly reduce employment as machines replace humans in performing specific tasks (the 

labour-saving effect). On the other hand, the product demand effect – i.e., an increase in activity 

through a productivity-enhancing technology – and the demand spillover effect – i.e., demand for 

other sectors’ output resulting from higher value added and incomes in the technology-adopting sector 

– can increase employment (Gregory et al., 2022). Empirically, the positive impact of robots on 

productivity has been found in cross-country, sector-level studies (Graetz and Michaels, 2018) and 

firm-level studies (Acemoglu et al., 2020; Duan et al., 2023; Koch et al., 2021). Moreover, the product 

demand effect and the demand spillover effect tend to dominate over the labour-saving effect for 

routine-replacing technologies in Europe, increasing employment (Gregory et al., 2022).  

Labour costs can play a vital role in shaping the labour market effects of labour-saving technologies, 

particularly industrial robots. As the price of robots is roughly uniform worldwide (Graetz and Michaels, 

2018), the higher labour costs are, the more likely the substitution of labour with robots is, all other 

things being equal. Therefore, robot adoption is likely to have a weaker impact on job separation rates 

and job finding rates in countries with lower levels of labour costs than in countries with higher labour 

costs. Indeed, lower labour costs may explain why the effects of robot adoption on routine jobs have 

been more benign in emerging countries than in high-income countries (de Vries et al., 2020). To 

account for this mechanism, we interact robot exposure with labour costs at the beginning of the 

observation period. These initial labour costs are plausibly exogenous to the robot adoption during the 

observation period and are not affected by feedback effects from robot adoption to labour costs. 

We find that, on average, robot exposure has a small and significant negative impact on the 

likelihood of job separations, but has no effect on the likelihood of job finding. In addition, lower initial 

labour costs were generally associated with a more beneficial impact of robot adoption on labour 

market flows. In particular, in countries with initially low or average levels of labour costs, robot 

exposure reduced job separations more strongly.1 Moreover, the effect of robot exposure on job 

findings was positive and significant in countries with low or average initial labour costs, but 

insignificant in countries with very low and very high initial labour costs. As explained in detail later, 

these small effects in countries with the lowest initial labour costs (such as Poland and Slovakia) likely 

reflect skilled workforce shortages that limited the scope of employment expansion driven by robot 

adoption associated with the rising role of these countries in European value chains (Altzinger and 

Landesmann, 2008).  

To evaluate the heterogeneity in the effects of robot exposure on labour market flows, we focus 

on occupational tasks performed by workers, which are a crucial determinant of robots' substitutability 

of human labour. We apply widely-used categories of routine and non-routine cognitive, and routine 

and non-routine manual job tasks proposed by Acemoglu and Autor (2011) and distinguish 

occupational groups accordingly. We find more beneficial effects for workers in routine occupations 

than for workers in non-routine occupations. These are particularly pronounced for job separations 

where robots reduced separations amongst workers in routine manual and routine cognitive 

occupations. The increase of job findings in countries with medium labour costs occurred mainly 

 
1 In our sample, the lowest initial labour costs were recorded in the Central Eastern European countries that 

joined the EU in 2004, such as Poland, Slovakia, and Hungary; while the highest initial labour costs were recorded 

in the Nordic countries, the German-speaking countries, and Belgium. 
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among routine occupations. However, we also find a small positive effect in non-routine analytical and 

non-routine manual occupations. As we discuss in more detail in the conclusions, these results provide 

evidence to what extent job tasks matter for the substitutability of workers with robots, and the 

potentially important role of scale effects in shaping the labour market effects of automation in 

Europe. 

We also find important differences between workers belonging to different age groups. In most 

countries, young and prime-aged workers benefitted from robots, while the results for older workers 

are mixed. Robot exposure reduced job separations and increased job findings among young and 

prime-aged workers, except for countries with the highest levels of initial labour costs. For older 

workers, robots increased job separations and decreased job findings across all industries, but 

decreased job separations and had no impact on job findings in manufacturing. 

Finally, using a counterfactual analysis, we assess the contributions of robot-driven job separations 

and hirings to changes in aggregate employment levels. We find that rising robot exposure increased 

aggregate employment levels in European countries by about 1-2% of the working-age population 

between 2004 and 2017. Our reduced-form estimation results reflect the sum of the abovementioned 

effects of robots: the labour-saving effect, the product-demand effect, and the demand-spillover 

effect. We show that lower job separations were the key driving factor behind the positive, aggregate 

employment effects of robot adoption in Europe. 

Our paper makes the following contributions to the literature. First, we provide the first evidence 

on the flow mechanisms behind the aggregate employment effects of automation in a European cross-

country setting. Up to now, the literature has mainly focused on employment stocks or structures, 

focusing either on regional (Acemoglu and Restrepo, 2020; Dauth et al., 2021) or worker-level (Bessen 

et al., 2023; Domini et al., 2021; Koch et al., 2021; Dauth et al., 2021) effects of robot exposure in 

specific countries, or have examined the effects of robotisation in a cross-country setting using 

industry-level data (Aksoy et al., 2021; de Vries et al., 2020; Klenert et al., 2022). Our results are 

consistent with country-specific findings on worker flows. For example, Domini et al. (2021) found that 

automation episodes in French manufacturing firms were associated with lower separation rates.  

Second, we identify differences in (initial) labour costs as a driver of cross-country differences in 

the labour market effects of robot adoption. Previous cross-country studies of employment effects of 

automation (de Vries et al., 2020; Klenert et al., 2022) did not shed much light on the factors that may 

explain international differences. They used broad country categorisations and did not quantify the 

role of differences in countries’ labour costs (or other factors), as we do here. At the same time, lower 

labour costs have been a key trigger of industrial development in peripheral countries (both in Europe 

and globally) and their integration in global value chains (Bellak et al., 2008; Milberg and Winkler, 

2013), especially in highly-automated sectors such as the automotive industry (Grodzicki and Skrzypek, 

2020). Our findings that the labour market impacts of industrial robots were more benign in  European 

countries with lower labour costs align with arguments that robot investments in those countries were 

driven by modernisation and attempts to expand product lines rather than a need to reduce labour 

inputs (Cséfalvay, 2020; Jürgens and Krzywdzinski, 2009), suggesting dominant scale effects.  

Third, we indicate age-related differences in the labour market impacts of robots. Our findings are 

consistent with arguments that young workers more familiar with emerging technologies benefit more 

from the adoption of new technologies (Cavounidis and Lang, 2020; Fillmore and Hall, 2021), which 

empirically were also highlighted by Albinowski and Lewandowski (2024).  

Fourth, using our causal estimates of the impact of robots on labour market flows to indirectly 

calculate robots’ contributions to changes in employment levels, we contribute to the literature 

focused on employment impacts of automation. We find a positive effect of robots on employment in 



5 
 

several European countries, in line with the findings of Koch et al. (2021) for Spain, Dauth et al. (2021) 

for Germany, and Adachi et al. (2022) for Japan, and results of Gregory et al. (2021) for routine-

replacing technologies more broadly. Our findings also complement Klenert et al. (2022) who found a 

positive aggregate employment effect of robots at the industry level in Europe and align with 

Fernández-Macías et al. (2021) suggestion that robots intensify the long-term trend of industrial 

automation rather than introduce a ground-breaking change in the scope of automation. They 

contrast, however, with results for the US that robots reduced employment and widened wage 

inequality (Acemoglu and Restrepo, 2022, 2020). 

The remainder of the paper is organised as follows. In Section 2, we present our data, particularly 

the EU-LFS data containing the worker-level information and the data on robots from the International 

Federation of Robotics (IFR); and we provide descriptive evidence. In Section 3, we discuss 

measurements and our econometric methodology. In Section 4, we present and discuss our results. In 

Section 5, we summarise and conclude the discussion. 

2 Data and Descriptive Evidence 

2.1 Data sources and definitions 

Our worker-level dataset is drawn from the European Labour Force Survey (EU-LFS) for the years 2000–

2017 (Eurostat, 2019), a period of rapid robotisation in many industrialised countries. The EU-LFS 

includes information on all European Union member states. However, due to missings in key variables 

in EU-LFS and the lack of availability of other data discussed below for specific countries, our sample is 

limited to 16 countries: Austria, Belgium, the Czech Republic, Denmark, Finland, Germany, Greece, 

Hungary, Italy, Poland, Portugal, Slovenia, Spain, Sweden, Slovakia, and the United Kingdom. 

The EU-LFS provides representative and harmonised information on individuals aged 15 years or 

older who live in private households. The EU-LFS data are available as repeated cross-sections. The 

respondents reported their labour market status during the month of the survey and one year earlier. 

Using this information, we follow Bachmann and Felder (2021) to measure transitions from one year 

to the next between particular labour market states (employment, unemployment, and non-

participation) at an individual level. We classify a person as having made a transition from employment 

(unemployment) to unemployment (employment) if the person reported being employed 

(unemployed) one year before the survey and being unemployed (employed) in the month of the 

survey. However, we cannot account for employment transitions within that year. We compare these 

individuals to their employed (unemployed) counterparts in the year before the survey and the month 

of the survey. We exclude individuals who moved from and into non-participation. 

The data on robots come from the International Federation of Robotics (IFR), which provides 

annual information covering the current stock and the deliveries of industrial robots across countries, 

by industry2 and by application (e.g., assembling and disassembling, welding, laser cutting), and 

accounting for depreciation (IFR, 2017). The data are based on consolidated information collected by 

nearly all industrial robot suppliers worldwide. The IFR ensures that the data are internationally 

comparable and have high reliability. For the Western European countries, we use the data on robots 

from 2000 to 2016. For the Central and Eastern Europe (CEE) countries, data on robots are only 

available from 2004 onwards. As the stock of robots in CEE was negligible before 2004, this does not 

limit our analysis. According to the International Organization for Standardization (ISO 8373:201), an 

 
2 For a detailed description of the sectors covered, see Table B5 in Appendix B. 
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industrial robot is an “automatically controlled, reprogrammable, multipurpose manipulator, 

programmable in three or more axes, which can be either fixed in place or mobile for use in industrial 

automation applications”. Moreover, an industrial robot usually operates in a series of movements in 

several directions to grasp or move something (ISO, 2012).  

Apart from industry-level data on robots (IFR 2017), we use data on GDP per capita, gross fixed 

capital formations in sectors, and gross value added from the EU KLEMS Growth and Productivity 

Accounts database. We construct yearly GDP per capita growth rates and merge them with a lag at the 

country level. We map data on investment (gross fixed capital formation) and gross value added to 

occupations and merge them with the EU-LFS data on the occupational level. We also control for 

participation in global value chains using data from the Research Institute on Global Value Chains 

(RIGVC UIBE, 2016). In addition, we account for trade flows by using total export data from the UN 

Comtrade database. These data are available at the commodity level, are assigned to industries using 

a crosswalk available on the webpage of the World Integrated Trade Solutions (WITS, 2021), and are 

aggregated and merged with the EU-LFS data at the one-digit sector level.  

To quantify workers' exposure to robots, we merge the EU-LFS data with the IFR data described 

above. To this end, we use harmonised information on the occupation (International Standard 

Classification of Occupations – ISCO) and the sector (Statistical Classification of Economic Activities in 

the European Community – NACE) of an individual, applying it to the current and the retrospective 

information. For the currently unemployed, we assign each individual to an occupation based on the 

last job performed before becoming jobless. 

Merging the worker-level data from the EU-LFS with the industry-level data requires additional 

calculations to ensure the required granularity. The EU-LFS provides information on the economic 

sector at the one-digit NACE level. Such sectoral disaggregation is too broad for the precise 

measurement of robot adoption, as there are substantial differences in robot use between two-digit 

sectors within a given one-digit sector, particularly in manufacturing (IFR 2017). We, therefore, use the 

data on two-digit occupations contained in the EU-LFS together with external information on the 

distribution of occupations across sectors to assign robot adoption at the two-digit occupational level. 

To obtain this more precise mapping of industry-level variables, we apply an occupation-industry 

matrix calculated using the distribution of two-digit occupations across two-digit sectors in a given 

country and time. We use data provided by Eurostat for the period 2000-2017 via the tailor-made 

extraction procedure.3 We follow Ebenstein et al. (2014) and Baumgarten et al. (2013) to transform 

two-digit industry-level variables ( 𝑌𝑠𝑐𝑡) into two-digit occupation-specific variables (𝑌𝑜𝑐𝑡) according to: 

𝑌𝑜,𝑠,𝑐,𝑡 = { ∑
𝐿𝑜,𝑠,𝑐,𝑡

𝐿𝑜,𝑐,𝑡
𝑌𝑠,𝑐,𝑡  𝑖𝑓 𝑠 ∈ 𝑆𝐸

𝑆

𝑠=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

  

where 𝐿𝑜𝑠𝑐𝑡 denotes the level of employment in occupation 𝑜, sector 𝑠, country 𝑐, and year 𝑡. We also 

use the broad industry classification in the EU-LFS dataset and define 𝑆𝐸 as a set of sectors which are 

adopting robots according to IFR data. Thus, we differentiate between sectors adopting and not 

adopting robots. Using this approach, we can assign industry-specific information to each worker 

based on a two-digit level occupation and broad industry classification. In particular, it allows us to 

measure the exposure of a specific occupation (at the two-digit level) to robots. Importantly, we allow 

 
3 See https://ec.europa.eu/eurostat/documents/1978984/6037342/EULFS-Database-UserGuide.pdf; the service 

is available through the Eurostat user support at https://ec.europa.eu/eurostat/help/support. The same data 

and methodology were used by Aghelmaleki et al. (2022). 
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occupational exposure to robots to differ between sectors that adopt robots and those that do not. 

Thus, robot exposure of managers employed in manufacturing differs from exposure of managers 

employed in services.  

To account for cross-country differences in the effects of robots, we focus on differences in initial 

labour costs in manufacturing (Eurostat, 2020). We transform labour costs (and GDP in a robustness 

check) into relative values by taking logs and deducting Slovenia's value, which is close to the average 

labour costs in our sample. We use data from 2004 because the Eurostat data on labour costs in CEE 

countries are available only from 2004 onwards. As the data on robots in these countries are also 

available from 2004 onwards, the variables to control for initial conditions capture differences in the 

first year for which all key data are available. We use GDP per capita as a robustness check, also using 

the Eurostat data. Table A1 in Appendix A provides an overview of the relative labour costs and GDP 

per capita in 2004 across countries. 

Finally, we classify workers into five groups according to the predominant task of their occupation: 

non-routine cognitive analytical, non-routine cognitive interpersonal, routine cognitive, routine 

manual, and non-routine manual physical (details in Table B6 in Appendix B). In doing so, we follow 

Fonseca et al. (2018) and Lewandowski et al. (2020). First, we calculate the task content of occupations 

using the methodology of Acemoglu and Autor (2011), based on the Occupational Information 

Network (O*NET) data adapted to the European data by Hardy et al. (2018), who present 

methodological details.4 Second, we allocate occupations to groups according to the task with the 

highest value. For instance, we classify an occupation as routine manual if the routine manual task 

intensity of that occupation is higher than the intensities of other task content measures; as routine 

cognitive if the routine cognitive task intensity is the highest; and so forth. The allocation of 

occupations to task groups is shown in Tables A3-4 in Appendix A. We keep these allocations constant 

to ensure comparability and exogeneity to robot adoption across countries. 

The descriptive statistics of the final estimation sample are presented in Table A2 in Appendix A. 

2.2 Descriptive evidence 

In the early 2000s (the beginning of our study period), there was significant cross-country variation in 

robot exposure (Figure 1). It ranged from virtually zero robots per 1,000 workers in Central and Eastern 

European countries (Hungary, Poland, Slovakia) and in Greece; to about two robots per 1,000 workers 

in Western European countries such as Belgium, Italy, and, in particular, Germany. 

Between 2000 and 2017, robot exposure converged across European countries. The countries with 

the lowest initial level of robot exposure, such as Poland, Hungary, and Slovakia, experienced the 

highest average growth rate (about 25% per year); while the countries with initially high levels of robot 

exposure experienced lower growth rates. Overall, the correlation between initial robot exposure and 

its average growth rate over the observation period was strong and negative (-0.75), indicating 

considerable convergence in robot exposure across European countries. However, we observe 

differences in robot applications across countries. In countries with low initial labour costs, robots tend 

to be used for welding and soldering, while in countries with relatively high initial labour costs to 

handle operations and tend machines (see Figure D1). Nonetheless, there is no a priori evidence 

 
4 O*NET is a US dataset of occupational descriptors that has been commonly applied to European data (Fonseca 

et al., 2018; Goos et al., 2014; Hardy et al., 2018; Lewandowski et al., 2020), as the differences between 

occupational demands in the US and in European countries are small (Handel, 2012; Lewandowski et al., 2022). 
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suggesting that some robot applications are affecting labour markets differently than other robot 

applications.  

Robot exposure also differed strongly between occupation groups (Figure 2). Initial robot exposure 

was by far the highest for machine operators (2.04) and craft and trade workers (2.21). While 

technicians and associates had a medium initial level of robot exposure (0.76), the level was lowest for 

service and sales (0.10) and agriculture, fishery, and forestry workers (0.23). In contrast to robot 

exposure across countries, which converged over time, the exposure across occupations diverged: it 

increased in all occupations, but the correlation between initial robot exposure and the average robot 

exposure growth rate by occupation was strong and positive (0.96). The two occupational groups that 

initially faced the highest exposure levels also had the highest growth rates of exposure (e.g. machine 

operators: 6.84; craft and trade workers: 5.32). In the remaining occupations, the growth rate was 

much lower (e.g., 2.68 for technicians and associates and 0.07 for service and sales workers). 

 

Figure 1: Initial robot exposure and the average robot exposure growth rate, by country 

 

Note: Robot exposure – the number of robots per 1,000 workers. The detailed data on industrial robots start in 

2000 for Denmark, Finland, Germany, Italy, Spain, Sweden, and the United Kingdom; in 2003 for Austria; in 2004 

for Belgium, the Czech Republic, Hungary, Poland, and Slovakia; and in 2005 for Greece, Portugal, and Slovenia. 

The robot exposure growth rate refers to the average annual growth rate from the initial date to 2017. – Source: 

authors’ calculations based on the IFR data. 
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Figure 2: Initial robot exposure and average robot exposure growth rate, by occupation group 

 
Note: Robot exposure – the number of robots per 1,000 workers. The detailed data on industrial robots start in 

2000 for Denmark, Finland, Germany, Italy, Spain, Sweden, and the United Kingdom; in 2003 for Austria; in 2004 

for Belgium, the Czech Republic, Hungary, Poland, and Slovakia; and in 2005 for Greece, Portugal, and Slovenia. 

The robot exposure growth rate refers to growth from the initial date to 2017. The figures displayed refer to 

averages by occupation groups across all countries. For the change in robot exposure by occupation group and 

country, see Figure D2 in Appendix D. – Source: authors’ calculations based on the EU-LFS and IFR data. 

Turning to the labour market variables, at the country level, there was a moderately negative 

correlation between the changes in the job separation rate and the robot exposure growth rate -0.24, 

see Figure 3).5 Thus, in countries with a stronger increase in robot exposure, job stability has remained 

constant or even improved. There is also a positive correlation between the changes in the job finding 

rates and the robot exposure growth rates (0.37, see Figure 4), which means that in countries with a 

stronger increase in robot exposure, the chances of finding a job improved more. Different country 

clusters partly drive these patterns. First, a group of CEE countries recorded high robot exposure 

growth rates and a relatively strong reduction in job separation rates and increases in job finding rates. 

Second, a cluster of countries with robot exposure growth rates, such as France and several Southern 

European countries, recorded increases in job separation rates and declines in job finding rates. 

Thus, overall, the descriptive statistics show a positive association between the growth in robot 

exposure and favourable labour market developments: i.e., lower job separation rates and higher job 

finding rates. However, these descriptive results may reflect reverse causality or common trends, 

especially because robot adoption may be highest in the sectors with the highest productivity and the 

best labour-market prospects. This would lead to a spurious correlation between robot adoption and 

beneficial labour-market developments. In the following, we investigate the causal effects of robots 

 
5 To avoid year-specific fluctuations, we take the average of the transition rates during the first three years and 

the last three years for which the data are available. Then we take the difference. Job separation and finding 

rates display strong variation between countries over time, with cyclical fluctuations playing an important role 

(see also Bachmann and Felder, 2020). In our sample, the average job separation rate ranged from 1.3% in 

Sweden to 5.0% in Spain, while the average job finding rate ranged from 30% in Greece to 54% in the UK (see 

Figure D3 in the appendix). 



10 
 

on labour market transitions using within-country, between-sector differences in robot exposure, as 

well as instrumental variables. 

 

Figure 3: Changes in job flow rates and average robot exposure growth rates 

Job separations Job findings 

  
Note: The changes in the job flow rates are calculated based on the differences between the three-year 
averages of the last three years and the first three years for which both IFR and EU-LFS data are available. The 
first three years are 2000-2002 for Denmark, Finland, Germany, Italy, Spain, Sweden, and the United Kingdom; 
2003, 2004, and 2006 for Austria; 2004-2006 for Belgium, the Czech Republic, Hungary, Poland, and Slovakia; 
and 2005-2007 for Greece, Portugal, and Slovenia. The last three years are 2015-2017. For the average job 

flow rates by country, see Figure D3 in Appendix D. – Source: authors’ calculations based on the EU-LFS and 

IFR data. 
 

3 Methodology 

3.1 Estimation framework and instruments 

We focus on two key labour market flows: (1) job separations (being employed in year 𝑡 − 1 and 

unemployed in year 𝑡) and (2) job findings (being unemployed in year 𝑡 − 1 and employed in year 𝑡).6 

Our outcome variables are indicator variables equal to one if a given flow occurs and equal to zero if it 

does not. 

Following Graetz and Michaels (2018) and Acemoglu and Restrepo (2019), we calculate robot 

exposure as the number of robots per thousand workers at the two-digit sector level (𝑅𝑠,𝑐,𝑡): 

𝑅𝑠,𝑐,𝑡 =  
𝑅𝑂𝐵𝑠,𝑐,𝑡

𝐸𝑀𝑃𝑠,𝑐,1995
 (2) 

Where 𝑅𝑂𝐵𝑐,𝑠,𝑡 is the total stock of industrial robots, and 𝐸𝑀𝑃𝑐,𝑠,1995 is employment (in thousands 

of workers) in sector 𝑠, country 𝑐, and year 𝑡. We use employment levels from 1995 – i.e., before our 

study period – as denominators. This ensures that changes over time result only from changes in the 

number of robots and are independent of changes in employment (which could be endogenous to 

robot exposure). 

 
6 We have to exclude workers transitioning from employment into inactivity and from inactivity into 

unemployment because the EU-LFS data do not include information about the last occupation or sector of 

employment of inactive individuals. 
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To estimate the causal effects of robot adoption, we need to account for the potential endogeneity 

of robot exposure to labour market outcomes. This could, for instance, be the case if worker shortages 

lead to an increase in the relative price of labour relative to capital, and firms react by investing in 

industrial robots. We, therefore, use an instrumental variables strategy, generalising the “technology 

frontier” instrument previously applied by Acemoglu and Restrepo (2019) and Dauth et al. (2021).7 We 

instrument the robot exposure in country 𝑐, sector 𝑠, and year 𝑡 with the average robot exposure in 

most advanced European economies (𝐼𝑐,𝑠,𝑡). For each of the 11 Western European countries in our 

sample, we use average robot exposure from other countries. This average robot exposure is 

computed from the 10 European countries for which we have robot data, omitting the country for 

which the instrument is computed.8 For each of five Eastern European countries in our sample, we 

instrument robot exposure with the average robot exposure in the 11 Western European countries for 

which robot data are available. Instrumented robot exposure is thus given by the formula: 

 

𝐼𝑠,𝑐,𝑡 =

∑ ∑
𝑅𝑂𝐵𝑠,𝑘,𝑡

𝐸𝑀𝑃𝑠,𝑘
1995

𝑆
𝑠

𝐶,𝑘 ∈𝐶
𝑐≠𝑘

𝐶
, 𝑤ℎ𝑒𝑟𝑒 𝐶 =  {

11 𝑖𝑓 𝑐 ∈ 𝐸 
10 𝑖𝑓 𝑐 ∈ 𝑊 

 

(3) 

 

where 𝑅𝑂𝐵𝑘,𝑠,𝑡 stands for the total stock of industrial robots in country 𝑘 (𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑘 ≠ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑐), 

sector s and year t 𝑎𝑛𝑑 𝐸𝑀𝑃𝑘,𝑠
1995 for the employment level in thousand workers in country 𝑘 and 

sector 𝑠 in 1995. 𝐶 is the number of countries in a particular group. We use the definition of the robot 

stock and of the instrument defined by equations (2) and (3) and use the sector-occupation mapping 

(see equation (1)) to map robot exposure at the sectoral level to individual workers (for details, see 

Technical details in Appendix C).  

As a baseline model, we estimate probit regressions of the following form:  

𝑃𝑟(𝑓𝑙𝑜𝑤 = 1|𝑋)𝑖,𝑜,𝑠,𝑐,𝑟,𝑡

= 𝐹(𝑅𝑜,𝑠,𝑐,𝑡−1, 𝛸𝑖𝑡 ,  𝛭𝑜,𝑐,𝑡−1, 𝑇𝑠,𝑐,𝑡−1, 𝐶𝑐,𝑡−1, 𝐵𝑟,𝑡−1, 𝜌𝑠, 𝛿𝑡 , 𝜇𝑐 , 𝜇𝑐 × 𝜏) 

  

 (4) 

where Pr (𝑓𝑙𝑜𝑤)𝑖,𝑜,𝑠,𝑐,𝑟,𝑡 is the likelihood of a given worker flow (eu or ue). Flow 𝑒𝑢(𝑢𝑒) indicates that 

a person 𝑖, in occupation 𝑜, sector 𝑠, country 𝑐, region 𝑟 made a transition from employment 

(unemployment) in year t-1 to unemployment (employment) in year t. 

Our main variable of interest is 𝑅𝑜,𝑠,𝑐,𝑡−1 – robot exposure in occupation 𝑜, in sector 𝑠, country 𝑐 

in the previous year.9 In all regressions, we account for individual characteristics (Χ𝑖𝑡) such as gender, 

 
7 Examples of studies instrumenting robot adoption in European economies with adoption in peer economies 

include Anelli et al. (2021), Damiani et al. (2023), Doorley et al. (2023), and Nikolova et al. (2024). 
8 Our sample includes five Eastern European countries (E): the Czech Republic, Hungary, Poland, Slovenia, and 

Slovakia; and 11 Western European countries (W): Austria, Belgium, Denmark, Finland, Germany, Greece, Italy, 

Portugal, Spain, Sweden, and the United Kingdom. For instance, the instrument for Austria is calculated as the 

average robot exposure in Belgium, Denmark, Finland, Germany, Greece, Italy, Portugal, Spain, Sweden, and the 

United Kingdom. The instrument for each Eastern European country is calculated as the average across all 11 

Western European countries. 
9 For those employed in year 𝑡 − 1 and in year 𝑡, we assign robot exposure based on the occupation performed 

in 𝑡, but using the value of robot exposure in year 𝑡 − 1. For those employed in year 𝑡 − 1 and unemployed in 

year 𝑡, we assign robot exposure based on the last occupation performed before becoming jobless, using the 

value of robot exposure in (𝑡 − 1). For those unemployed in year 𝑡 − 1 and in year 𝑡, we assign robot exposure 
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age, education, and native or migrant worker status. We also add industry group (𝜌𝑠) and year (𝛿𝑡) 

fixed effects to control for potential changes across years and industries that are common to all 

countries. For industries, we follow Dauth et al. (2021) and consider manufacturing and six industry 

groups outside of manufacturing: agriculture and mining, utilities, construction, general services, 

business services, public services and education. We also add country fixed effects (μ𝑐) and country-

specific linear trends (μ𝑐 × τ) to account for country-specific differences and trends over time. Robot 

exposure data are merged with the EU-LFS data at the country-occupation-industry level (sectors with 

and without industrial robots, according to IFR, 2017). Hence, the variance used for identification is 

the difference in robot exposure between occupations within a country and industry group.10 

To control for macroeconomic conditions, we include a vector of several macro indicators 

( Μ𝑜,𝑐,𝑡−1): sectoral gross value added, the ratio of investments to the gross capital formation (see 

Stehrer et al., 2019), and we account for the effects of globalisation using sector-specific measures of 

participation in global value chains proposed by Wang et al. (2017). We transform two-digit industry 

indicators into two-digit occupation-specific variables according to equation (1). We also control for 

lagged GDP growth at the country level (C𝑐,𝑡−1), for country-specific trade flows at the sector level 

(𝑇𝑠,𝑐,𝑡−1), especially growth in exports, and labour demand shocks at the regional level (NUTS2) 

(𝐵𝑟,𝑡−1) calculated with the Bartik (1991) method. 

As we are particularly interested in reasons for cross-country differences, we allow the effect of 

robots to vary between countries at different development levels. To this end, we use two measures 

of the initial conditions of a country (𝐿𝑐): labour costs in 2004, in our main specification; and GDP per 

capita in 2004 as a robustness check.11 We interact these measures with robot exposure. Therefore, 

the main specification of our model is an augmented version of equation (4): 

 

𝑃𝑟(𝑓𝑙𝑜𝑤 = 1|𝑋)𝑖,𝑜,𝑠,𝑐,𝑟,𝑡 = 𝐹(𝑅𝑜,𝑠,𝑐,𝑡−1, 𝑅𝑜,𝑠,𝑐,𝑡−1 × 𝐿𝑐 , 𝑅𝑜,𝑠,𝑐,𝑡−1 × (𝐿𝑐)2, 

 𝛸𝑖,𝑡 ,  𝛭𝑜,𝑐,𝑡−1, 𝑇𝑠,𝑐,𝑡−1, 𝐶𝑐,𝑡−1, 𝐵𝑟,𝑡−1, 𝜌𝑠, 𝛿𝑡 , 𝜇𝑐 , 𝜇𝑐 × 𝜏) 

  

 (5) 

where all variables are the same as in equation (4), and in addition, we interact country-specific labour 

costs in 2004, 𝐿𝑐 with robot exposure (𝑅𝑜,𝑐,𝑡−1). We implement the IV specification with a control 

function approach (Aghelmaleki et al., 2022) with instrumental variables described in the previous 

subsection. This approach allows for the estimation of marginal effects when using interaction terms.12  

 
based on the last occupation performed before becoming jobless, using the value of robot exposure in year 𝑡 −

1. For those unemployed in year 𝑡 − 1 and employed in year 𝑡, we assign robot exposure based on the occupation 

performed in 𝑡, but using the value of robot exposure in year 𝑡 − 1. 
10 We also estimated models without industry fixed effects, and obtained results in line with our baseline results 

presented in the paper. These additional results are available upon request. 
11 We use 2004 labour costs as this is the first year for which labour costs are available. Moreover, five out of the 

six Central and Eastern Europe in our sample joined the EU in 2004. The labour costs are a proxy for the relative 

price of robots and labour. Still, they are not a proxy for the share of potentially automatable jobs: the cross-

country correlation between the level of initial labour costs and the employment share of routine occupations is 

only 0.15. At the same time, the cross-country differences in average labour costs in Europe are quite persistent, 

the correlation between their 2004 and 2016 values is 0.97. Hence, the 2004 labour costs are a solid proxy for 

relative prices of robots and labour over the period studied. 

12 See Petrin and Train (2010) for a discussion of the control function approach for non-linear (including discrete 

choice) models, and Bachmann et al. (2014) for an application to labour market transitions. 
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To implement our instrumental variable approach, we use the control function method which is a 

limited information maximum likelihood approach and follows a two-step procedure. In the first step, 

we regress all exogenous variables – including the instruments – on the endogenous variable. In the 

case of N endogenous variables, we estimate N first-stage regressions. In the second step, we include 

residuals obtained from the first stage as control variables in the original equation to eliminate 

endogeneity (Wooldridge, 2015). Applying this method to our baseline specification, all exogenous 

variables, including the instrument, are regressed on our robot exposure variable in the first stage. For 

the second stage, we predict the residual of the first stage and include this as an additional regressor 

in equations (4) and (5). This approach allows us to isolate the changes in exposure driven by 

technological progress and simultaneously remove occupation-specific shocks that affect robot 

adoption and the probability of transitioning out of or into a particular occupation. Our results can be 

interpreted as the average causal effect of robot exposure on the job separation likelihood for those 

employed and on the job finding likelihood for those unemployed during the study period.13 

 

3.2 Counterfactual analysis 

To assess the economic significance of estimated effects, we perform a counterfactual historical 

analysis. We calculate counterfactual scenarios of labour market flows and the employment levels that 

these flows imply. In the counterfactual scenario, we keep robot exposure constant in each country 

and sector from 2004 onwards. This means that new robot installations would have only compensated 

for the depreciation of robot stock and the aggregate changes in the labour force.  

The counterfactual analysis proceeds in four steps (see Section C2 in Annex C for the detailed 

methodology used to calculate the counterfactual). First, we use the estimated coefficients from 

equation 4 and actual values of all variables to predict job separation (EU) and job finding (UE) 

likelihoods. Second, we use the same coefficients and the counterfactual values of robot exposure to 

calculate the counterfactual flow likelihoods. Third, we use the predicted and the counterfactual flow 

likelihoods from the first two steps to recursively calculate each country’s predicted and counterfactual 

employment levels until 2017. To do so, we use the actual employment levels in 2004 as the starting 

point. Fourth, we calculate the effect of robot exposure on employment as the relative difference 

between the counterfactual and the predicted scenarios for each country and year.  

4 Econometric results 

In this section, we present our econometric results, first for all workers, then for workers belonging to 

different task and age groups. Next, we present the counterfactual analysis to asses the economic 

significance of the impact of robot exposure on worker flows and their contributions to the resulting 

changes in employment rates. Finally, we show robustness checks. 

 
13 While the short-term effects of robots may be affected by potential selection effects (workers may avoid 

entering occupations heavily exposed to robots), they are unlikely to affect our findings. First, firm-level evidence 

from European countries shows that robot-adopting firms tend to grow faster and pay better than similar firms 

not adopting robots (Bessen et al., 2023; Koch et al., 2021). Second, investments in automation tend to be bulky 

and sporadic (Domini et al., 2021), so it is difficult for workers to anticipate their future exposure to robots. Third, 

our results show that job findings, which would be the driver of selection effects, are much less affected by robots 

than job separations. Finally, our analysis of cumulative impacts combines the results for job separations and job 

findings and therefore considers potential selection effects. 
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4.1 The impact of robots on labour market transitions in Europe and the role of labour costs 

We start by investigating the causal effects of robot exposure on job separations using our baseline 

specification, Equation 4. We report the coefficients of interest (Table 1), followed by the marginal 

effects of robot exposure (Figure 5), which allow for an interpretation of the effect sizes. 

In the probit estimation without instruments, we find a significant negative effect of robot 

exposure on the likelihood of job separation (Table 1, column 1).14 The IV results using the control 

function approach double the size of this effect (column 2 of Table 1): i.e., robot exposure reduces the 

job separation rate, which implies an increase in job stability.15 Accounting for interactions between 

robot exposure and countries’ initial labour costs (equation 5), we find a noticeable heterogeneity in 

this size depending on labour costs (columns 3 and 4 of Table 1). The estimated interaction term 

between robot exposure and countries’ initial levels of labour costs suggests a non-monotonic and 

nonlinear relationship between job separation likelihood and robot exposure (columns 3 and 4, 

respectively). 

The importance of initial labour costs is visible in the marginal effects of robot exposure on job 

separations by country.16 We do so for our preferred specification, including the interaction of robots 

with labour costs, and display the results in Figure 5, with countries ordered according to their initial 

labour costs. The negative effect of robot exposure on job separations was much more pronounced 

for countries with average levels of labour costs (Figure 5). In particular, in the country with an average 

level of initial labour costs – Slovenia – the marginal effect of robot exposure amounted to a reduction 

in the likelihood of job separation of -0.07 pp (the average job separation rate in our sample was 4 pp). 

In countries with labour cost levels in 2004 that were at least double the level in Slovenia – i.e., the 

level of labour costs in Germany – the effect of robot exposure was half the size (-0.04 pp). 

Figure 5 also reveals a U-shape relationship between the effects of robot exposure and labour 

costs. In the countries with the lowest initial labour costs, namely Central Eastern European countries, 

the effects were also half the size (about -0.04 pp in Hungary and the Czech Republic) or even weaker 

(Poland and Slovakia) than in countries with medium labour costs. We attribute these weak effects in 

countries with the lowest labour costs to country-specific factors that counterbalanced the positive 

employment impact of low labour costs. First, the adoption of automation technologies tends to 

increase skill requirements (Chun, 2003; Goldin and Katz, 2010), but CEE countries specialised (both 

across and within sectors and occupations) in routine-intensive jobs (Hardy et al., 2018; Lewandowski 

et al., 2022) with lower skill requirements than in Western European countries, especially in 

manufacturing (Krzywdzinski, 2017). In CEE countries, skill shortages and mismatches were identified 

as crucial constraints on firm growth despite low labour costs (Sondergaard et al., 2012).17  

 
14 The detailed results of the full specification are included in Tables B1 (for job separations) and B2 (for job 

findings) in the appendix. 
15 The results of the first stage of the estimation are presented in Table B1 in the appendix. The Kleibergen-Paap 

F-statistic shows that the instrument is strong, meaning that it is a good predictor of actual robot exposure. 
16 We use the estimated quadratic fit pertaining to the initial labour costs (Table 1). For the sake of presentation, 

we use the values of labour costs recorded in particular countries to calculate the marginal effects of robot 

exposure conditional on them; and for the figures, we rank countries according to the value of their initial labour 

costs. Figure B1 in the appendix presents the marginal effects with the linear labour costs scale on the x-axis. 

17 Sectoral studies of the highly automated automotive industry show that firms in CEE countries were less 

likely to move to more advanced tasks than similar firms in Germany, and therefore displayed a lower demand 

for skills in the aftermath of automation (Krzywdzinski, 2017). Cross-country evidence confirms the relative 
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Table 1: The effect of robot exposure on the likelihood of job separation 

 (1) (2) (3) (4) 

 Probit CF Probit CF 

A: All Sectors     

Robot Exposure -0.003** -0.005*** -0.011*** -0.012*** 

(0.001) (0.001) (0.002) (0.003) 

Robot Exposure X Labour Costs   -0.006*** -0.005*** 

  (0.001) (0.001) 

Robot Exposure X (Labour Costs)2   0.011*** 0.008*** 

  (0.002) (0.002) 

Country FE Yes Yes Yes Yes 

Linear time trend Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes 

No. of Observations 11.8 M 11.8 M 11.8 M 11.8 M 

Kleibergen-Paap F-statistic for weak 

identification 

 408 872.3  18 537.4 

B: Manufacturing     

Robot Exposure -0.001 -0.006*** -0.013*** -0.014*** 

(0.001) (0.002) (0.003) (0.004) 

Robot Exposure X Labour Costs    -0.005*** -0.003* 

  (0.001) (0.002) 

Robot Exposure X (Labour Costs)2   0.014*** 0.011*** 

  (0.003) (0.004) 

Country FE Yes Yes Yes Yes 

Linear time trend Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes 

No. of Observations 2.6 M 2.6 M 2.6 M 2.6 M 

Kleibergen-Paap F-statistic for weak 

identification  

 197 835.2  10 947.6 

Note: The table presents the estimated coefficients of the probit and control function (CF) regressions. Standard 

errors (in brackets) are clustered at the occupation-year level. 18 *** p<0.01, ** p<0.05, * p<0.1.  Individual-level 

controls: age group, education group, gender, and native/non-native status. Aggregate-level controls: global 

value chain participation, gross value-added, the ratio of investment added to gross value-added, GDP growth, 

regional labour demand shocks, and growth in exports. For CF, robot exposure is instrumented using robot 

exposure in the Western European countries in the sample. For the full specification, see Table B1 in Appendix 

B. For the first stage regressions of model (4), see Table B3 in Appendix B.– Source: authors’ calculations based 

on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

Consequently, firms in CEE countries might have struggled to benefit fully from these investments, 

especially in terms of hiring, despite low labour costs. Second, in CEE countries, robot adoption 

primarily followed greenfield investment and integration into global value chains (Cséfalvay 2020). The 

 
upgrading of occupational structures of supplier countries, such as CEE countries, in highly automated sectors 

over time (Fana and Villani, 2022). 
18 Clustering standard errors at the sector-year or occupation-country-year level does not affect the 

interpretation of our result- see Figures D10 and D11 in the appendix. 
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introduction of robots and other modern technologies was largely driven by modernisation and 

expansion of product ranges in CEE plants rather than the need to reduce labour intensity and labour 

costs (Jürgens and Krzywdzinski, 2009). It led to considerable growth in robot exposure but was driven 

by sectors that grew almost from scratch. As the robot exposure shock was thus substantial but 

concerned a relatively small segment of the economy, the overall effect on job separations was low in 

CEE countries.19 

 

Figure 4: Marginal effects of robot exposure on the likelihood of job separation. 

A: All Sectors B: Manufacturing 

Interaction with labour cost 

  
Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

employment to unemployment for all sectors (A) and for manufacturing (B) based on regressions presented in 

Table 1, columns (2) and (4). The vertical lines represent the 95% confidence intervals.  Robot exposure is 

instrumented using the average robot exposure in the Western European countries in the sample. Countries on 

the x-axis are ranked according to the initial labour cost (in parentheses) (for details, see Table A1). Figure B1 in 

the appendix presents the marginal effects with the linear labour costs scale on the x-axis. – Source: authors’ 

calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

To quantify the economic importance of these effects, we use the estimated marginal effects to 

assess the contribution of increasing robot exposure to the likelihood of a job separation between the 

early 2000s (average for 2000-2002) and the mid-2010s (average for 2014-2017). The effects were 

quantitatively relevant. On average, robot exposure in our sample increased by 1.44 units (between 

2004 and 2017) decreasing the job separation likelihood by 0.06 pp. In the meantime, the average job 

separation rate declined by 0.15 pp. Hence, the change in the likelihood associated with robot 

exposure totalled 43%. However, country-specific results are more nuanced. For instance, in Germany, 

growth in robot exposure by 2.8 units (between 2004 and 2017) reduced the likelihood by 0.1 pp, while 

the probability of job separation decreased by 1.4 pp over the same period. Thus, the change 

associated with the increase in robot exposure amounted to 7% of the observed change. In some CEE 

countries, such as Slovakia, which experienced one of the greatest increases in robot exposure in the 

EU (by 10.50 units in manufacturing and by 2.6 units in total economy), the effects attributed to this 

factor were even more pronounced, as they amounted to 14% to the recorded change in job 

 
19 Slovakia recorded the largest robot exposure growth, driven by the automotive sector. In 1995 (we use 1995 

employment levels to normalise robot exposure), the automotive industry had accounted for only 0.8% of 

employment in Slovakia. By 2017, its employment share increased four-fold, but was still below 3.5%. 
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separations. We perform a systematic assessment of the contributions of robot exposure to 

employment in all countries in our sample in subsection 4.3. 

 

Table 2: Effect of robot exposure on the likelihood of job finding 

 (1) (2) (3) (4) 

 Probit CF Probit CF 

A: All Sectors     

Robot Exposure -0.002 0.002 0.018*** 0.011*** 

 (0.001) (0.001) (0.003) (0.004) 

Robot Exposure X Labour Costs    0.008*** 0.003 

   (0.002) (0.002) 

Robot Exposure X (Labour Costs)2   -0.022*** -0.012*** 

   (0.003) (0.004) 

Country FE Yes Yes Yes Yes 

Linear time trend Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes 

No. of Observations 1.3 M 1.3 M 1.3 M 1.3 M 

Kleibergen-Paap F-statistic for weak 

identification  

 27 783.8   3 714.4 

B: Manufacturing     

Robot Exposure 0.000 0.002 0.005 0.003 

 (0.001) (0.002) (0.003) (0.004) 

Robot Exposure X Labour Costs    0.001 -0.004* 

   (0.002) (0.002) 

Robot Exposure X (Labour Costs)2   -0.006 -0.001 

   (0.003) (0.004) 

Country FE Yes Yes Yes Yes 

Linear time trend Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes 

No. of Observations 0.26 M 0.26 M 0.26 M 0.26 M 

Kleibergen-Paap F-statistic for weak 

identification  

 14 791.2  2 457.2 

Note: The table presents the estimated coefficients of the probit and control function (CF) regressions. Standard 

errors (in brackets) are clustered at the occupation-year level. *** p<0.01, ** p<0.05, * p<0.1.  Individual-level 

controls: age group, education group, gender, and native/non-native status. Aggregate-level controls: global 

value chain participation, gross value-added, the ratio of investment added to gross value-added, GDP growth, 

labour demand shocks, and growth in exports. For CF, robot exposure is instrumented using robot exposure in 

the Western European countries in the sample. For the full specification, see Table B2 in Appendix B. For the first 

stage regressions of model (4), see Table B4 in Appendix B.– Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

We re-estimate our models on the subsample of workers in manufacturing, i.e., the sector with 

the highest robot usage. While this yields very similar results to those for the total economy (Table 1, 

Panel B; Figure 4, Panel B), the effects for manufacturing are slightly stronger in most countries. This 

aligns with intuition, as robot exposure is the largest in manufacturing. Therefore, the direct impacts 

of robot exposure are more substantial in manufacturing than in the entire economy, leading to higher 

marginal effects when analysing manufacturing only. 
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Next, we study the effect of robot exposure on the likelihood of job finding in European countries. 

Again, we start with the baseline specification (equation 4). We find that, on average, robot exposure 

did not affect job findings (Table 2, column 2).20 However, as for job separations, we find important 

heterogeneity between more and less-developed countries concerning job findings. Once we account 

for the initial labour costs, we find that the effect of robot exposure on the likelihood of finding a job 

was significant and positive at the average level of initial labour costs (column 4 of Table 2). The 

coefficients on the interactions between robot exposure and initial labour costs (level and squared) 

suggest a non-linear relationship. 

The marginal effects plotted by country reveal an inverse U-shape relation between labour costs 

and the effect of robot exposure on job finding (Figure 5): the positive impact was the largest in the 

countries with a medium level of labour costs, such as Slovenia (about 0.42 pp); but was close to zero 

or insignificant in the countries with the lowest initial labour costs in our sample, i.e., Poland and 

Slovakia. The results for the countries with the lowest labour costs likely result from the same factors 

discussed for job separations, i.e. skill shortages. In the countries with the highest labour costs, i.e., 

Denmark, Germany, Sweden, and Belgium, the estimated effect on the likelihood of job finding was 

negative (about 0.1 pp). 

We use the estimated effects to quantify the economic effects of increasing robot exposure. The 

average increase in robot exposure by 1.44 units corresponds to an increase in the job finding 

likelihood by 0.17 pp, despite the overall decrease in this likelihood by 2.54 pp. However, the effect 

differs across countries. The Czech Republic is an example of a CEE country that had low levels of labour 

costs in 2004 and recorded substantial increases in robot exposure between 2000 and 2017 (by 8.7 

units in manufacturing and 2.4 units in total economy). This translates into an almost 0.5 pp increase 

in the likelihood of finding a job, equivalent to 30% of the increase recorded over this period. While, 

according to our estimates, in some most developed countries, the growth of robot exposure reduced 

the likelihood of finding a job, the effect is minor. For instance, an increase in robot exposure by 1.7 

units in Sweden reduced this likelihood by 0.2 pp, equivalent to 4% of the recorded reduction in this 

likelihood. 

Combined with the effects on job separations, the effects on job findings suggest different net 

effects on employment in various groups of countries. In the less developed Central Eastern European 

countries, the effect of robot exposure on employment was likely positive because of the reduced 

likelihood of job separation and the increased or insignificant likelihood of job finding. However, in 

most developed countries, the net effect was ambiguous because of the reduced likelihood of job 

separation and finding, negatively affecting labour market dynamics and turnover. We later formalise 

the analysis of robot exposure's aggregate consequences via labour market flows. 

As a robustness check, we again re-estimate our model for a subsample of manufacturing workers. 

The results are noisy – they are slightly positive in countries with the lowest level of labour costs 

(Poland and Slovakia) and insignificant in other countries (Table 2, Panel B, and Figure 5, Panel B). 

However, later we will show that the job separation channel of the effects of robots is quantitatively 

more relevant than the job-finding channel. The comparison of the results for job findings for all 

sectors and manufacturing also indicates that the effects are less pronounced in the manufacturing 

sector. This is likely to be caused by a demand spillover effect, i.e. higher labour demand in the service 

sector, e.g. for the maintenance of robots, which has also been stressed by (Dauth et al., 2021). 

 

 
20 Again, the instrument is strong, as indicated by the Kleibergen-Paap F-statistic (see Table B2 in the appendix). 
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Figure 5: Marginal effects of robot exposure on the likelihood of job finding. 

A: All Sectors B: Manufacturing 

Interaction with labour costs 

  

Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

unemployment to employment for all sectors (A) and for manufacturing (B) based on the regressions presented 

in Table 2, columns (2) and (4). The vertical lines represent the 95% confidence intervals.  The robot exposure is 

instrumented using robot exposure in the Western European countries in the sample. Countries on the x-axis are 

displayed in ascending order of initial labour cost (in parentheses). Figure B1 in the appendix presents the 

marginal effects with the linear labour costs scale on the x-axis. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

4.2 Heterogeneity according to job tasks and age 

The effects of robot exposure are likely to differ between worker groups for at least three reasons. 

First, the substitutability of workers by robots depends strongly on the tasks they perform. Second, 

workers are likely to differ in their ability to adapt to technological change. Third, job-specific human 

capital or labour market regulations may lead to differences between workers of different age groups. 

In order to examine whether the effects of robot exposure differ by job task, we estimate 

model (5), including an indicator variable (and interactions) for five occupational groups distinguished 

according to the dominant job task: routine cognitive (RC), non-routine cognitive analytical (NRCA), 

non-routine cognitive personal (NRCP), routine manual (RM), and non-routine manual (NRM). The 

allocation of occupations to task groups follows Lewandowski et al. (2020) (see data section and Tables 

A3-A4 in Appendix A for details). We focus on marginal effects from the model with interactions 

between robot exposure, initial labour costs (level and squared) and task dummy. We present the 

estimated coefficients and those from a model without interactions in Tables D1-D2 in Appendix D. 

In countries with average levels of initial labour costs, the effect of robot exposure on job finding 

was slightly positive among RM workers (e.g. plant and machine operators, assemblers) and NRCA 

workers and positive among RC workers (e.g. associated professionals, clerks). These effects are 

sizable, at around 0.005, 0.012 and 0.018, respectively (Figure 6, right panel). The effect on job findings 

among NRM workers was positive in countries with average initial labour costs (0.009) and negative in 

countries with high initial labour costs (-0.005). For job separations, the effect of robot exposure was 

negative among RC and RM workers in countries with average and low levels of labour costs and among 

NRM workers in countries with high levels of labour costs (Figure 6, left panel). Therefore, our results 

suggest that higher robot exposure improved job prospects in routine jobs in countries with average 

initial labour costs, particularly in Central and Eastern Europe, but also in some Southern European 

countries. While such an effect on routine workers may be surprising, it is worth noting that robot 
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adoption in CEE countries primarily resulted from FDI and the integration of plants into global value 

chains (Cséfalvay, 2020). Hence, rising robot exposure was driven by expanding sectors rather than 

introducing new technologies in existing plants, a typical pattern in the most advanced economies. 

This improved the labour market prospects of CEE workers in RC and NRM occupations. Indeed, in 

countries with high initial labour costs, the effect of robot exposure on the likelihood of job flows 

among RM and RC workers was mainly insignificant. 

 

Figure 6: Marginal effects of robot exposure on the likelihood of job separations and finding, by 

task groups 

Job separation Job finding 
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Note: Marginal effects of robot exposure on the likelihood of job separation and on the likelihood of job finding 

at different development levels measured by labour costs in 2004 for different task groups. The vertical lines 

represent the 95% confidence intervals. The robot exposure is instrumented using robot exposure in the 

Western European countries in the sample. Countries on the x-axis are displayed in ascending order of initial 

labour costs (in parentheses). NRCA – Non-routine cognitive analytical; NRCP – Non-routine cognitive 

interpersonal; RC – Routine cognitive; RM – Routine manual; NRM – Non-routine manual physical. For 

regression estimates, see Tables D1-2 in Appendix D. – Source: authors’ calculations based on the EU-KLEMS, 

EU-LFS, Eurostat, IFR, UN Comtrade, UIBE GVC, and O*NET data. 

We also investigate the heterogeneity of the effects of robot exposure by worker age. There are 

two main arguments for why the impact of technology can differ between younger and older workers. 

First, technological change can reduce returns to old skills related to technology that become obsolete 

and increase returns to new skills related to emerging technology (Fillmore and Hall, 2021). Older 

workers are more likely to possess outdated skills, and their expected returns from investing in new 

skills are lower than younger workers. Accordingly, older workers can be more affected by 

technological change. Second, older workers are more likely to benefit from insider power and, as 

such, may be more protected from changes than younger workers, who are often outsiders or labour 

market entrants. Indeed, there is evidence that the de-routinisation of work in Europe has affected 

younger workers to a larger extent (Lewandowski et al., 2020) and that industrial robots in Germany 

have reduced the labour market prospects of younger workers (Dauth et al., 2021).  

We find that robot exposure significantly reduced the likelihood of job separation for young 

workers (aged 25-34), prime-age workers (aged 35-54) and the youngest workers (aged 15-24) in most 

countries in our sample (Figure 7, left panel and Table D3 in Appendix D).21 However, exposure to 

robots increased the probability of job separation for older workers (aged 55-70) in countries with an 

 
21 For marginal effects of robot exposure on the likelihood of job separation and job finding by age group in 

manufacturing, see Figure D9 in the appendix. 
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average level of labour costs. For manufacturing (Figure D9 in Appendix D), robot exposure significantly 

reduced job separations for all age groups, also for older workers, in countries with average labour 

costs, and to a lesser extent in countries with low labour costs. However, we find insignificant effects 

for workers in high labour cost countries and for young workers. The marginal effect of robot exposure 

on the job finding likelihood was positive for young and prime-age workers in countries with an average 

level of labour costs (Figure 7, right panel, and Table D4 in Appendix D). We find adverse effects on the 

job finding likelihood for older workers in most countries. Within manufacturing, the positive effects 

on job finding are even more pronounced for young (aged 25-34) and prime-age workers (aged 35-54) 

for countries with average labour costs, but coefficients for the youngest and oldest workers are 

insignificant.  

 

Figure 7: Marginal effects of robot exposure on the likelihood of job separations and finding, by 

age group 

Age Job separations Job finding 
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Note: Marginal effects of robot exposure on the probability of job separation and job finding at different 

development levels measured by labour costs in 2004. The vertical lines represent the 95% confidence intervals.   

The robot exposure is instrumented using robot exposure in the Western European countries in the sample. 

Countries on the x-axis are displayed in ascending order of initial labour cost (in parentheses). ). Robot exposure 

is instrumented using robot exposure in the Western European countries in the sample. For regression estimates, 

see Tables D3 and D4 in Appendix D. – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, 

IFR, UN Comtrade, and UIBE GVC data. 

Overall, robot exposure was beneficial for young workers as it reduced job separations and 

increasing job findings especially in countries with average labour costs. Prime-age workers also 

benefited from exposure to robots, especially in manufacturing. In contrast, the effects for older 

workers are mixed. While older workers in countries with average labour costs faced higher job 

separations and lower job findings, they experienced increased job stability in manufacturing. This 

indicates that older workers can benefit from the productivity-enhancing effects of robots by staying 

in manufacturing, but that they are less able to benefit from demand-spillover effects outside of 

manufacturing than younger workers. This may be related to the differences in skill sets: new 

technologies tend to reduce returns to skills that older workers have (Fillmore and Hall, 2021). 

Moreover, a shorter time to benefit from investment in new skills discourages older workers from 

learning these new skills (Cavounidis and Lang, 2020). 

4.3 Implications for employment and mechanisms 

In this subsection, we assess the economic impact of rising robot exposure on labour market flows and 

how they contributed to employment changes in European countries. To this end, we use the 

estimated coefficients from equation 5 (Tables 1-2) to calculate counterfactual trajectories of labour 

market flows and the resulting employment rates. We assume that in each country, robot exposure 

remained at the level recorded in 2004. We compare these trajectories with the actual evolution of 

the relevant labour market variables. 

This analysis suggests that the rising robot exposure increased employment levels in most 

European countries. If the level of robot exposure had remained at the level recorded in 2004, in all 

CEE countries except for Poland, employment in 2017 would have been lower (and unemployment 

would have been higher) by about 1.0-2.5% of the working-age population (equivalent to 1.0-2.5 pp of 

the employment rate, Table 3). These effects were the largest in Slovakia (2.5% by 2017) and the 

smallest in Slovenia and Hungary (0.5-0.7% by 2017). In southern European countries, but Greece, the 

contribution of robots is smaller, but noticeable (0.3-1.0% of the working-age population). Overall, our 

counterfactual simulations show that an increase in robot adoption led to a rise in total employment 

by about 800 thousand additional jobs across all countries in our sample, which amounts to 0.47% of 

total employment. This suggests that the adoption of robots led to an expansion of the firms and 
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sectors adopting automation technologies, which, in turn, translated into higher labour demand. 

Similar findings at the firm level were presented for France by Domini et al. (2021) and Acemoglu et al. 

(2020), and for Spain by Koch et al. (2021). 

Finally, we decompose the overall contribution of rising robot exposure to employment into the 

sub-contributions of job separations and job findings. In all 16 countries studied, the contribution of 

job separations was larger than that of job findings, in many cases noticeably so (the contribution of 

job findings is negative in some countries, Table 3). Hence, improved job stability appears to be a key 

mechanism behind the labour market effects of robot adoption in Europe.  

 

Table 3: The estimated cumulative contribution of robots to employment between 2004 and 2017, with sub-

contributions of job separations and job findings (in % of working-age population) 

 The cumulative effect on 

employment 

Of which: 

 (% of working-age population) Job separation Job finding Residual 

Poland -0.01 0.00 0.00 0.00 

Sweden 0.02 0.02 0.00 0.00 

United Kingdom 0.06 0.06 0.01 0.00 

Belgium 0.08 0.09 -0.01 0.00 

Denmark 0.09 0.10 -0.01 0.00 

Greece 0.12 0.11 0.00 0.00 

Germany 0.14 0.17 -0.02 0.00 

Italy 0.25 0.21 0.03 0.00 

Finland 0.28 0.23 0.05 0.00 

Spain 0.45 0.36 0.08 0.00 

Slovenia 0.47 0.38 0.08 0.01 

Austria 0.66 0.63 0.03 0.00 

Hungary 0.72 0.57 0.15 0.01 

Portugal 1.03 0.93 0.10 0.00 

Czech Republic 1.74 1.51 0.19 0.05 

Slovakia 2.54 2.50 0.03 0.00 

 

Note: Calculations based on model (4) from Table 1 and Table 2. To asses the contributions of particular 

channels to the overall effect we utilize the decomposition method proposed by Fujita and Ramey (2009) (see 

Section C2 in Appendix C for technical details.) The residual indicates the difference between the 

counterfactual scenario (total effect) and the sum of semi-counterfactual scenarios (contributions of particular 

flows) which arises because the simulations are calculated recursively. – Source: authors’ calculations based 

on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, UIBE GVC, and OECD data. 

4.4 Robustness checks 

We conduct several robustness checks to test the validity of our regression results. First, to check 

whether any specific countries do not drive our results, we run 16 additional regressions, excluding 

one country at a time (Figure 8). Point estimates from all these regressions are within confidence 

intervals from our baseline specifications, apart from the regressions estimated on a subsample 

without Slovakia. Excluding Slovakia makes the results stronger for Central and Eastern European 

countries with the lowest initial level of labour costs, but it does not affect the results for other 

countries, including the most robot-exposed economies, such as Germany and Belgium. Slovakia 
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recorded particularly large increases in robot exposure, but starting from very low levels and mostly 

due to the automotive sector.22  Thus, the associated changes in overall labour market outcomes in 

Slovakia were moderate. As a result, the exclusion of Slovakia strengthens the estimated effects of 

automation, especially for job separations, in similar countries with low initial labour costs. 

Second, we only include country fixed effects instead of country fixed effects and country-specific time 

trends. For job separations, only including country fixed effects does not affect our results. The 

coefficients of interest in the preferred specification increase slightly in absolute terms and remain 

sizeable and significant (Table 5, columns 1 and 3, and Figure D4 in Appendix D). For job findings, the 

coefficients of interest remain similar in size in the specification with labour costs interaction and 

become significant and positive in the specification without interaction. However, as shown in the 

previous section, the overall impact of robots on employment is mostly through the job separation 

channel. Hence, the minor change in the job-finding likelihood leaves our overall results intact. 

Third, we exclude variables from our baseline regressions that may be influenced by robot 

exposure and may be bad controls, particularly value-added and gross fixed capital formation. This 

does not affect our results (Table 5, columns 2 and 4, and Figure D5 in Appendix D). 

 
22 In Slovakia, the robot exposure in the automotive industry was close to zero in 2004, but soared to over 280 

robots per 1000 workers in 2016. No other country witnessed such a massive growth in robot exposure in any 

sector (the automotive industry in the Czech Republic recorded the second largest increase, by 95 robots per 

1000 workers). At the same time, the automotive industry in Slovakia accounted for only 1.8% of total 

employment in 2004 and 3.2% of total employment in 2016.  

Figure 8: The effects of robot exposure on the likelihood of the flows for reduced sample 

regressions 

Job separation Job finding 

  

Note: Red lines represent the marginal effects of robot exposure on the probability of transitioning from 

employment to unemployment (left panel) and unemployment to employment (right panel) for the baseline 

regressions using the full country sample (Figures 4-5). Each grey line represents the results obtained from 

separate regressions, omitting one country at a time from the sample. If a particular country is excluded from 

the sample, we calculate the marginal effect for this country based on its labour cost value. For example, even 

if Germany is omitted from the regression, we calculate the marginal effect for Germany using its labour cost 

value (1.16) and present it in Figure 8. Countries on the x-axis are displayed in ascending order of initial labour 

cost (in parentheses). The vertical lines represent the 95% confidence intervals.  – Source: authors’ calculations 

based on the EU-KLEMS, EU-LFS, IFR, Eurostat, UN Comtrade, and UIBE GVC data. 
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Table 5: The effects of robot exposure on the likelihood of job separation and job finding- robustness 

checks 

  Job separation  

 (1) 

CF 

(2) 

CF 

(3) 

CF  

(4) 

CF 

Robot Exposure -0.008*** -0.008*** -0.013*** -0.013*** 

 (0.002) (0.002) (0.003) (0.003) 

Robot Exposure X Labour Costs   -0.003*** -0.002 

  (0.001) (0.001) 

Robot Exposure X (Labour Costs)2   0.007*** 0.007*** 

  (0.002) (0.002) 

Country FE Yes No Yes No 

VA and GFCF Yes No Yes No 

Year FE Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes 

     

  Job finding  

 (1) 

CF 

(2) 

CF 

(3) 

CF 

(4) 

CF 

Robot Exposure 0.005*** 0.006*** 0.016*** 0.018*** 

 (0.001) (0.001) (0.004) (0.004) 

Robot Exposure X Labour Costs   0.003 0.002 

  (0.002) (0.002) 

Robot Exposure X (Labour Costs)2   -0.015*** -0.016*** 

  (0.004) (0.004) 

Country FE Yes No Yes No 

VA and GFCF Yes No Yes No 

Year FE Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes 

Note: The table presents the estimated coefficients of the control function (CF) regressions. Standard errors (in 

brackets) are clustered at the occupation-year level. Individual-level controls: age group, education group, 

gender, and native/non-native status. Aggregate-level controls: global value chain participation, GDP growth, 

labour demand shocks, and growth in exports. VA and GFCF stand for value added and gross fixed capital 

formations. Robot exposure is instrumented using robot exposure in Western European countries. *** p<0.01, 

** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, 

and UIBE GVC data. 

Fourth, we re-estimate our models using the level of GDP per capita in 2004 instead of the 2004 

labour cost index as a control for the cross-country differences in the initial development level. The 

results confirm the findings from our baseline specification for both job separations and job findings 

(Table D5 and D6, and Figure D6 and D7 in Appendix D). Fifth, we use the percentiles of robot exposure 

instead of actual values of robot exposure as our variable of interest, in line with the literature (e.g. 

Graetz and Michaels 2018).23 The estimated marginal effects are qualitatively similar (Table D7 and D8, 

and Figure D8 in Appendix D). Sixth, we test whether the results are robust to the use of alternative 

clustering specifications. Our results do not change when we apply alternative clustering by 

occupation, year and country (Figure D10) and by sector and year (Figure D11). 

 
23 The percentiles are defined based on sectors with non-zero values of robots. 
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Fifth, we estimate linear probability models instead of probit models to facilitate a comparison 

between models and other studies in the literature. This does not change our results. The marginal 

effects of both models are almost the same as in the case of the probit estimation (Figures D12 and 

D13). 

5 Conclusions 

In this paper, we have investigated the effects of robot exposure on worker flows in 16 European 

countries between 2000–2017. We aimed to answer three research questions. First, what were the 

effects of rising robot exposure on job separation and job finding rates in Europe, and what role did 

labour costs play in this context? Second, how did the effects differ between workers performing 

different tasks and differing in age? Third, what consequences did the effects of robot exposure on 

worker flows have for employment? 

To answer these questions, we estimated worker flow probabilities using individual-level data from 

the EU-LFS and data from the IFR, which provides yearly information on robot exposure at the industry 

level. We explicitly included labour costs to analyse their role in the effects of robot exposure on 

worker flows. To account for the potential endogeneity of robot adoption, we used a control-function 

approach with instruments in the spirit of Acemoglu and Restrepo (2019) and Dauth et al. (2021).  

Our findings can be summarised as follows. First, overall, we found minor beneficial effects of robot 

exposure on job separations and no effect on job findings. We detected significant cross-country 

heterogeneities that depend on initial labour costs. On the one hand, in countries with relatively low 

or average levels of labour costs, higher robot exposure led to lower job separation rates, and, thus, 

improved job stability, to a much larger extent than in countries with high levels of labour costs. On 

the other hand, in countries with relatively low or average levels of labour costs, higher levels of robot 

exposure led to increased job findings. 

Overall, our results support a negative link between labour costs and the employment effects of 

robots – the lower the labour costs, the more positive the employment outcomes. However, the 

relatively weak effects in countries with the lowest initial levels of labour costs (Central Eastern 

European countries such as Slovakia and Poland) induce a U-shaped relationship between labour costs 

and the effects of robot exposure on the transition probabilities. We think they result from another 

force, namely skill shortages in CEE countries (Krzywdzinski, 2017; Sondergaard et al., 2012), which 

constrained employment responses to robot adoption, i.e. productivity-improving investments that 

also raised skill requirements. Our results are, therefore, generally in line with the Marshallian laws of 

labour demand, which state that labour is more likely to be substituted by other factors of production 

if labour costs are relatively high. 

Second, we found important differences between workers performing different job tasks. Perhaps 

surprisingly, we generally found more beneficial effects for routine workers than for non-routine 

workers. This result was most pronounced in countries with average initial labour costs. We found 

minor effects of robot exposure on labour market flows among workers in non-routine cognitive 

occupations. Our results contradict the notion that routine tasks are always strongly substituted by 

robots. Instead, our results point to the importance of labour costs for the substitutability of workers 

performing different job tasks by robots: i.e., in countries with average levels of labour costs, workers 

performing routine tasks seem to be complements of, rather than substitutes for, robots. This result is 

weaker in CEE countries, which can be explained by two factors. First, robot investment in these 

countries was mainly driven by FDI and greenfield investments, modernisations, and attempts to 

expand product ranges, especially in the automotive sector, which can explain the beneficial impacts 
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on labour market flows that we have found. At the same time, these robot-adopting sectors were 

initially quite small, implying a modest impact on job separations. Second, the shortages of skilled 

workers and specialization of CEE countries mentioned above, particularly in less skill-demanding task, 

could have limited the response of hiring in the aftermath of robot adoption that probably required 

different skills than older technologies. 

We also found heterogeneity across age groups. Except for countries higher labour costs, robots 

improved labour market prospects of young and prime-age workers in particular: they reduced job 

separation rates and increased job finding among these age groups. However, workers aged 55 years 

or older face challenges in certain environments. In particular, we detect some positive effects for 

older workers within manufacturing, which are likely due to the productivity-enhancing effects of 

robots. However, outside of manufacturing, the effects on older workers are less benign, indicating 

that they benefit less from demand-spillover effects than younger workers. Intergenerational 

differences in skills required to work with new technologies, e.g. working in service-sector firms which 

perform robot maintenance, are a probable mechanism behind this difference. Surveys of adult skills 

show that older workers have lower levels of skills needed in a technology-rich environment (OECD, 

2013). The shorter period of time to benefit from investment in new skills also incentivises older 

workers to remain in sectors and occupations in which they have specific knowledge, even if 

technological progress reduces returns to their skills (Cavounidis and Lang, 2020). 

Third, our counterfactual exercise showed that the effects of robots on worker flows had important 

implications for employment rates. Rising robot exposure increased employment, particularly in 

countries with low or average labour costs. These aggregate results were mainly due to reduced 

separations rather than increased hirings. 

Our results have important policy implications. First, the overall effects of robots are positive in 

several countries. In Europe, this technology generally acted as an opportunity for workers rather than 

a threat. The key policy challenge is to identify the factors contributing to this technology being a 

complement to rather than a substitute for human labour. Our paper is a step in this direction. The 

next steps may include a more explicit analysis of the factors that enable workers to adjust to 

technological change, especially through the increased use of training. Second, our finding that the 

relative importance of hirings and separations as adjustment mechanisms to robot adoption differs 

strongly between countries implies that policy measures to support worker adjustment to technology 

have to take into account these country-specificities. Third, it is important to improve our 

understanding of how labour market institutions mediate the impacts of robots (and other novel 

automation technologies) in various countries. As institutions generally differ between countries 

rather than within them, our framework and sample size do not allow identification of the role of 

institutional factors. However, Leibrecht et al. (2023) provided descriptive evidence that robots are 

positively correlated with unemployment in countries where collective bargaining is weak, while Kostøl 

and Svarstad (2023) showed that unions improve relative wages of routine workers, who are more 

substitutable with automation, thus potentially strengthening its substitution effects. Future research 

that provides causal findings on how collective bargaining and other institutions shape the labour 

market impacts of automation would have high scientific and policy relevance. 
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Appendices 

Appendix A  

Table A1: Relative labour costs (in manufacturing) and GDP in 2004 across countries 

  Relative Labour Cost 2004 Relative GDP per capita 2004 

Austria 1.05 0.73 

Belgium 1.21 0.68 

Czech Republic -0.56 -0.22 

Germany 1.16 0.61 

Denmark 1.14 1.00 

Spain 0.59 0.36 

Finland 1.03 0.74 

Greece 0.37 0.27 

Hungary -0.55 -0.52 

Italy 0.84 0.56 

Poland -0.88 -0.79 

Portugal -0.12 0.03 

Sweden 1.20 0.84 

Slovenia 0.00 0.00 

Slovakia -0.83 -0.54 

United Kingdom 0.83 0.61 

Note: The table shows the initial conditions of the countries relative to Slovenia, the richest Central Eastern 

European country, which we use as a reference. – Source: authors’ calculations based on the Eurostat data 

(lc_n04cost and sdg_08_10). 
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Table A2: Sample descriptives 
  

EU UE   
mean sd mean sd 

Women 
 

0.46 (0.5) 0.46 (0.5) 

Men 
 

0.54 (0.5) 0.54 (0.5) 

Married 
 

0.59 (0.49) 0.43 (0.5) 

Age Age 15-24 0.08 (0.27) 0.15 (0.36) 
 

Age 25-34 0.26 (0.44) 0.29 (0.45) 
 

Age 35-54 0.55 (0.5) 0.45 (0.5) 
 

Age 55-70 0.12 (0.32) 0.12 (0.32) 

Education Low: Lower secondary 0.21 (0.4) 0.35 (0.48) 
 

Medium: Upper secondary 0.52 (0.5) 0.51 (0.5) 
 

High: Tertiary education 0.27 (0.45) 0.14 (0.35) 

Native Share 
 

0.89 (0.32) 0.86 (0.35) 

Industry Groups Primary sector 0.03 (0.16) 0.04 (0.21) 
 

Manufacturing 0.22 (0.41) 0.22 (0.41) 
 

Utilities 0.02 (0.13) 0.01 (0.1) 
 

Construction 0.07 (0.26) 0.11 (0.31) 
 

Consumer service activities 0.17 (0.38) 0.23 (0.42) 
 

Business service activities 0.19 (0.39) 0.17 (0.37) 
 

Public Services and education 0.31 (0.46) 0.22 (0.42) 

Task Groups Non-Routine Cognitive Analytical 0.16 (0.36) 0.07 (0.25) 
 

Non-Routine Cognitive Personal 0.2 (0.4) 0.05 (0.22) 
 

Routine Cognitive 0.22 (0.41) 0.24 (0.43) 
 

Routine Manual 0.14 (0.34) 0.18 (0.38) 
 

Non-Routine Manual 0.29 (0.45) 0.47 (0.5) 

Labour Costs 2004 0.33 (0.89) 0.3 (0.9) 

Robot Exposure 1.38 (4.72) 1.29 (4.79) 

Global value chain participation backward 0.16 (0.09) 0.17 (0.09) 

Gross value added 10.5 (1.61) 10.48 (1.61) 

Investment to gross value added 0.83 (0.05) 0.83 (0.06) 

Gdp growth 
 

101.66 (2.94) 101.68 (2.97) 

Export growth 
 

0.38 (1.02) 0.42 (1.07) 

Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, UIBE GVC, and O*NET 

data. 
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Table A3: The allocation of occupations to task groups (ISCO-88) 

Task group ISCO-88 code  Occupation  

NRCA 

11 Legislators and senior officials 

21 Physical, mathematical, and engineering science professionals 

22 Life science professionals  

24 Other professionals 

31 Physical and engineering science associate professionals 

NRCP 

12 Corporate managers 

13 General managers 

23 Teaching professionals 

32 Life science and health associate professionals 

33 Teaching associate professionals 

RC 

34 Other associate professionals  

41 Office clerks 

42 Customer services clerks 

52 Models, salespersons, and demonstrators  

RM 

71 Extraction and building trades workers 

72 Metal, machinery, and related trades workers 

74 Other craft and related trades workers 

81 Stationary-plant and related operators  

82 Machine operators and assemblers  

93 Labourers in mining, construction, manufacturing, and transport  

NRM 

51 Personal and protective services workers 

61 Market-oriented skilled agricultural and fishery workers 

62 Subsistence agricultural and fishery workers 

71 Extraction and building trades workers  

72 Metal, machinery, and related trades workers 

73 Precision workers in metal and related trades workers 

83 Drivers and mobile-plant operators 

91 Sales and services elementary occupations 

92 Agricultural, fishery, and related labourers 

Note: The allocation is based on Hardy et al. (2018), see data section for details. 
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Table A4: The allocation of occupations to task groups (ISCO-08) 

Task group ISCO-08 code  Occupation  

NRCA 

21 Science and Engineering Professionals 

22 Health Professionals 

24 Business and Administration Professionals 

25 Information and Communications Technology Professionals 

26 Legal, Social, and Cultural Professionals 

31 Science and Engineering Associate Professionals 

35 Information and Communications Technicians 

NRCP 

11 Chief Executives, Senior Officials, and Legislators 

12 Administrative and Commercial Managers 

13 Production and Specialised Services Managers 

14 Hospitality, Retail and Other Service Managers 

23 Teaching Professionals 

32 Health Associate Professionals 

RC 

33 Business and Administration Associate Professionals 

34 Legal, Social, Cultural, and Related Associate Professionals 

41 General and Keyboard Clerks 

42 Customer Services Clerks 

43 Numerical and Material Recording Clerks 

44 Other Clerical Support Workers 

52 Sales Workers 

RM 

72 Metal, Machinery, and Related Trades Workers 

73 Handicraft and Printing Workers 

75 Food Processing, Woodworking, Garment, and Other Craft and Related Trades 

Workers 

81 Stationary Plant and Machine Operators 

82 Assemblers 

94 Food Preparation Assistants 

NRM 

51 Personal Services Workers 

53 Personal Care Workers 

54 Protective Services Workers 

61 Market-oriented Skilled Agricultural Workers 

62 Market-oriented Skilled Forestry, Fishery, and Hunting Workers 

63 Subsistence Farmers, Fishers, Hunters, and Gatherers 

71 Building and Related Trades Workers (excluding Electricians) 

74 Electrical and Electronic Trades Workers 

83 Drivers and Mobile Plant Operators 

91 Cleaners and Helpers 

92 Agricultural, Forestry, and Fishery Labourers 

93 Labourers in Mining, Construction, Manufacturing, and Transport 

95 Street and Related Sales and Services Workers 

96 Refuse Workers and Other Elementary Workers 

Note: The allocation is based on Hardy et al. (2018), see data section for details. 

  



37 
 

Appendix B 

Table B1: The effect of robot exposure on the likelihood of job separation – full specification 

 
(1) (2) (3) (4)  

Probit CF Probit CF 

Robot Exposure -0.003** -0.005*** -0.011*** -0.012*** 

 (0.001) (0.001) (0.002) (0.003) 

Robot Exposure X Labour Costs   -0.006*** -0.005*** 

   (0.001) (0.001) 

Robot Exposure X (Labour Costs)2   0.011*** 0.008*** 
 

  (0.002) (0.002) 

Age Groups (Base Category: Age 15-24)     
Age 25-34 -0.170*** -0.170*** -0.170*** -0.170*** 

 (0.006) (0.006) (0.006) (0.006) 

Age 35-54 -0.354*** -0.354*** -0.353*** -0.354*** 

 (0.007) (0.007) (0.007) (0.007) 

Age 55-70 -0.340*** -0.340*** -0.340*** -0.340*** 

 (0.011) (0.011) (0.011) (0.011) 

Education Group (Base Category: Low education)     
Medium education -0.189*** -0.188*** -0.189*** -0.189*** 

 (0.007) (0.007) (0.007) (0.007) 

High education -0.388*** -0.386*** -0.388*** -0.387*** 

 (0.014) (0.014) (0.014) (0.014) 

Gender (Base category: Female)     
Male -0.081*** -0.082*** -0.080*** -0.081*** 

 (0.007) (0.007) (0.007) (0.007) 

Native -0.175*** -0.175*** -0.175*** -0.175*** 

 (0.009) (0.009) (0.009) (0.009) 

Global Value Chain (Backwards) 0.004 0.068 -0.018 0.034 

 (0.090) (0.091) (0.096) (0.095) 

Gross value added (Log) -0.026** -0.027*** -0.030*** -0.028*** 

 (0.010) (0.010) (0.011) (0.011) 

Investment to Gross value added -0.102 -0.079 -0.095 -0.078 

 (0.097) (0.095) (0.096) (0.095) 

GDP Growth -0.018*** -0.018*** -0.017*** -0.018*** 

 (0.002) (0.002) (0.002) (0.002) 

Bartik instrument -0.868*** -0.864*** -0.885*** -0.879*** 

 (0.137) (0.137) (0.138) (0.137) 

Export growth 0.017*** 0.016*** 0.016*** 0.016*** 

 (0.003) (0.003) (0.003) (0.003) 

Residual 1  0.006***   

  (0.002)   
Residual 2    -0.002 

    (0.004) 

Residual 3    -0.002 

    (0.002) 

Residual 4    0.007** 

    (0.004) 
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(1) (2) (3) (4)  

Probit CF Probit CF 

Industry Group (Base Category: Agriculture and Mining) 

Manufacturing -0.071*** -0.062*** -0.056** -0.053** 

 (0.023) (0.023) (0.022) (0.022) 

Utilities -0.276*** -0.271*** -0.265*** -0.264*** 

 (0.034) (0.033) (0.033) (0.033) 

Construction 0.172*** 0.173*** 0.178*** 0.178*** 

 (0.027) (0.027) (0.026) (0.026) 

Consumer Services -0.004 -0.005 -0.006 -0.006 

 (0.023) (0.024) (0.023) (0.023) 

Business Services -0.125*** -0.127*** -0.128*** -0.129*** 

 (0.022) (0.022) (0.022) (0.022) 

Public Services & Education -0.259*** -0.259*** -0.261*** -0.260*** 

 (0.024) (0.024) (0.024) (0.024) 

Constant 0.807*** 0.813*** 0.791*** 0.786*** 

 (0.222) (0.222) (0.221) (0.221) 

Year dummies Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes 

Country linear trends Yes Yes Yes Yes 

Industry Group FE Yes Yes Yes Yes 

Observations 11.8 M 11.8 M 11.8 M 11.8 M 

Note: The table presents the estimated coefficients of the probit and control function (CF) regressions. Standard 

errors (in brackets) are clustered at the occupation-year level. Year and industry group fixed effects are included. 

Individual-level controls: age group, education group, gender, and native/non-native. Aggregate-level controls: 

global value chain participation, gross value added, the ratio of investment added to gross value added, GDP 

growth, labour demand and growth in exports. For CF, robot exposure is instrumented using robot exposure in 

the Western countries in the sample. R01_1 are residuals from the first stage regression for the specification 

without interactions. R02_1, r03_1 and r04_1 are residuals from the first stage regression for robot exposure, 

interaction of robot exposure with labour costs, and robot exposure with squared labour costs, respectively. *** 

p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN 

Comtrade, and UIBE GVC data. 
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Table B2: The effect of robot exposure on the likelihood of job finding – full specification 

  (1) (2) (3) (4) 

 Probit CF Probit CF 

Robot Exposure -0.002 0.002 0.018*** 0.011*** 

 (0.001) (0.001) (0.003) (0.004) 

Robot Exposure X Labour Costs   0.008*** 0.003 

   (0.002) (0.002) 

Robot Exposure X (Labour Costs)2   -0.022*** -0.012*** 
 

  (0.003) (0.004) 

Age Groups (Base Category: Age 15-24)     
Age 25-34 -0.411*** -0.411*** -0.411*** -0.411*** 

 (0.009) (0.009) (0.009) (0.009) 

Age 35-54 -0.675*** -0.674*** -0.674*** -0.674*** 

 (0.014) (0.014) (0.014) (0.014) 

Age 55-70 -1.116*** -1.115*** -1.115*** -1.115*** 

 (0.021) (0.021) (0.021) (0.021) 

Education Group (Base Category: Low education)     
Medium education 0.190*** 0.189*** 0.191*** 0.190*** 

 (0.009) (0.009) (0.009) (0.009) 

High education 0.363*** 0.361*** 0.364*** 0.363*** 

 (0.012) (0.012) (0.012) (0.012) 

Gender (Base category: Female)     
Male 0.011 0.012 0.011 0.012 

 (0.008) (0.008) (0.008) (0.008) 

Native -0.082*** -0.082*** -0.081*** -0.082*** 

 (0.011) (0.011) (0.011) (0.011) 

Global Value Chain (Backwards) -0.024 -0.097 -0.070 -0.121 

 (0.077) (0.078) (0.082) (0.080) 

Gross value added (Log) 0.004 0.003 0.000 -0.001 

 (0.012) (0.012) (0.012) (0.012) 

Investment to Gross value added 0.479*** 0.459*** 0.456*** 0.460*** 

 (0.114) (0.113) (0.111) (0.110) 

GDP Growth 0.022*** 0.022*** 0.022*** 0.022*** 

 (0.003) (0.003) (0.003) (0.003) 

Bartik instrument 1.010*** 1.003*** 1.015*** 1.005*** 

 (0.145) (0.145) (0.146) (0.145) 

Export growth -0.010** -0.010** -0.010** -0.010** 

 (0.005) (0.005) (0.005) (0.005) 

Residual 1  -0.006***   

  (0.002)   
Residual 2    0.019*** 

    (0.005) 

Residual 3    0.013*** 

    (0.003) 

Residual 4    -0.026*** 

    (0.006) 

Industry Group (Base Category: Agriculture and Mining)     
Manufacturing 0.132*** 0.123*** 0.116*** 0.124*** 

 (0.023) (0.023) (0.023) (0.023) 

Utilities 0.327*** 0.323*** 0.318*** 0.324*** 
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  (1) (2) (3) (4) 

 Probit CF Probit CF 

 (0.033) (0.034) (0.033) (0.033) 

Construction 0.110*** 0.108*** 0.104*** 0.110*** 

 (0.027) (0.027) (0.027) (0.027) 

Consumer Services 0.152*** 0.152*** 0.152*** 0.152*** 

 (0.023) (0.023) (0.023) (0.023) 

Business Services 0.295*** 0.297*** 0.295*** 0.296*** 

 (0.022) (0.023) (0.022) (0.022) 

Public Services & Education 0.378*** 0.377*** 0.376*** 0.376*** 

 (0.024) (0.025) (0.024) (0.024) 

Constant -2.413*** -2.400*** -2.322*** -2.347*** 

 (0.352) (0.351) (0.351) (0.348) 

Year dummies Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes 

Country linear trends Yes Yes Yes Yes 

Industry Group FE Yes Yes Yes Yes 

Observations 1.3 M 1.3 M 1.3 M 1.3 M 

Note: See notes to Table B1. *** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 
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Table B3: The effect of robot exposure on the likelihood of job separation, First Stage regressions 

 (1) (2) (3) 

 1st First Stage 2nd First Stage 3rd First Stage 

Independent variable: 
 

Robot Exposure 

Robot Exposure X Labour 

Costs 

Robot Exposure X (Labour 

Costs)2 

        

Instrument 0.760*** 0.016 -0.008 

 (0.027) (0.020) (0.013) 

Instrument X Labour 

Costs -0.153 1.329*** -0.002 

 (0.151) (0.123) (0.105) 

Robot Exposure X 

(Labour Costs)2 0.740*** -0.103 1.410*** 

 (0.150) (0.142) (0.116) 

Constant 6.856** -10.927*** 4.832** 

 (3.136) (2.797) (2.205) 

Observations 11.8 M 11.8 M 11.8 M 

Kleibergen-Paap F-statistic for 

weak identification 

18 537.4 

Note: See notes to Table B1. *** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, and IFR, UN Comtrade, and UIBE GVC data. 

Table B4: The effect of robot exposure on the likelihood of job finding, First Stage regressions. 

  (1) (2) (3) 

 1st First Stage 2nd First Stage 3rd First Stage 

Independent variable: 
 

Robot Exposure 

Robot Exposure X Labour 

Costs 

Robot Exposure X (Labour 

Costs)2 

        

Instrument 0.700*** 0.030 -0.016 

 (0.031) (0.027) (0.019) 

Instrument X Labour 

Costs -0.254* 1.352*** -0.058 

 (0.146) (0.122) (0.102) 

Robot Exposure X (Labour 

Costs)2 0.843*** -0.171 1.427*** 

 (0.140) (0.143) (0.119) 

Constant 7.863** -12.027*** 5.759** 

 (3.556) (3.364) (2.494) 

     
Observations 1.3 M 1.3 M 1.3 M 

Kleibergen-Paap F-statistic for 

weak identification 

3 714.4 

Note: See notes to Table B1. *** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data.   
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Figure B1: Marginal effects of robot exposure on the likelihood of job separation / finding – across 

initial labour cost distribution. 

 

Job separation Job finding 

  
Source: See notes to  

 

Figure 4. Authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC 

data. 
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Table B5: List of sectors covered with industrial robot data provided by International Federation of 

Robotics 

IFR 

class 

Categories, divisions and classes of 

economic activities, ISIC, rev.4 

Definitions 

A-B Agriculture, hunting and forestry; fishing Crop and animal production, hunting and related service activities, 

forestry and logging, fishing and aquaculture 

C Mining and quarrying Mining of coal and lignite, extraction of crude petroleum and natural gas, 

mining of metal ores, mining support service 

D Manufacturing  

10-12 Food products and beverages; Tobacco 

products 

 

13-15 Textiles, leather, wearing apparel  Textiles; wearing apparel; dressing & dyeing of fur; luggage, handbags, 

saddlery, harnesses, and footwear 

16   Wood and wood products (incl.) furniture Manufacture of wood, products of wood (incl. wood furniture) and 

products of cork 

17-18 Paper and paper products, publishing & 

printing 

Manufacture of pulp, paper, and converted paper production; printing of 

products, such as newspapers, books, periodicals, business forms, 

greeting cards, and other materials; and associated support activities, 

such as bookbinding, plate-making services, and data imaging; 

reproduction of recorded media, such as compact discs, video recordings, 

software on discs or tapes, records, etc. 

19 Chemical products, pharmaceuticals, 

cosmetics 

Manufacture of basic pharmaceutical products and pharmaceutical 

preparations. This also includes the manufacture of medicinal chemical 

and botanical products. 

20-21 Unspecified chemical, petroleum products Transformation of crude petroleum and coal into usable products, 

transformation of organic and inorganic raw materials by a chemical 

process and the formation of products 

22 Rubber and plastic products without 

automotive parts* 

e.g., rubber tires, plastic plates, foils, pipes, bags, boxes, doors, etc.; 

rubber and plastic parts for motor vehicles should be reported in 29.3 

23 Glass, ceramics, stone, mineral products 

n.e.c. (without automotive parts*) 

Manufacture of intermediate and final products from mined or quarried 

non-metallic minerals, such as sand, gravel, stone or clay; manufacture of 

glass, flat glass ceramic and glass products, clinkers, plasters, etc. 

24 Basic metals (iron, steel, aluminum, copper, 

chrome) 

e.g., iron, steel, aluminum, copper, chrome, etc. 

25 Metal products (without automotive 

parts*), except machinery and equipment 

e.g., metal furniture, tanks, metal doors, forging, pressing, stamping and 

roll forming of metal, nails, pins, hand tools, etc. 

28 Industrial machinery e.g., machinery for food processing and packaging, machine tools, 

industrial equipment, rubber and plastic machinery, industrial cleaning 

machines, agricultural and forestry machinery, construction machinery, 

etc. 

26-27 Electrical/electronics  

29 Automotive  

30 Other transport equipment  

E Electricity and water supply e.g., ships, locomotives, airplanes, spacecraft vehicles 

F Construction General construction and specialised construction activities for buildings 

and civil engineering works. This includes new work, repairs, additions 

and alterations, the erection of prefabricated buildings or structures on 

the site, and construction of a temporary nature. 

P Education, research and development  

Source: IFR (2017). 
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Table B6: Construction of task contents measures based on O*NET data 

Task content measure (T) Task items (J) 

Non-routine cognitive analytical Analysing data/information  

Thinking creatively  

Interpreting information for others 

Non-routine cognitive 

interpersonal 

Establishing and maintaining personal relationships 

Guiding, directing, and motivating subordinates  

Coaching/developing others 

Routine cognitive 

 

 

The importance of repeating the same tasks  

The importance of being exact or accurate  

Structured vs. unstructured work 

Routine manual 

 

 

Pace determined by the speed of equipment  

Controlling machines and processes  

Spending time making repetitive motions 

Non-routine manual physical 

 

 

 

Operating vehicles, mechanised devices, or equipment  

Spending time using hands to handle, control, or feel objects, tools, or 

controls  

Manual dexterity  

Spatial orientation 
Source: Own elaboration based on Acemoglu and Autor (2011). 
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Appendix C – Technical details 

To map the IFR data on robots to individual workers, we use the information on economic sectors and 

occupations available in the EU-LFS. Sectors are coded at the one-digit level of NACE rev. 1 between 

2000-2007, and of NACE rev. 2 between 2008-2017. Occupations are coded at the two-digit level of 

ISCO-88 between 2000-2010, and of ISCO-08 between 2011-2017. 

The industries reported by the IFR are in accordance with the International Standard Industrial 

Classification of All Economic Activities (ISIC) revision 4 (see Table 1A, Appendix A). The IFR data 

distinguish between six main industries: (A-B) Agriculture, Hunting and Forestry; Fishing; € Mining and 

Quarrying; (D) Manufacturing; € Electricity, Gas, and Water Supply; (F) Construction; and (P) Education, 

Research and Development. We will call these industries the “IFR industries”. The manufacturing 

industry, which is the industry with the highest robot stock, is divided further into 13 sub-industries. 

In each occupation, we classify workers into two subgroups depending on their sector of employment: 

those in the IFR sectors and those in the non-IFR (NIFR) sectors. We then use the sector-occupation 

mapping as in equation (1) to map robot exposure to workers in the IFR sectors. Workers in the NIFR 

sectors receive a zero weight as there are no robots in these sectors, and IFR sectors are reweighted 

such that weights sum up to one (see Diagram 1).  

Diagram C1. The mapping of the robot exposure to occupations across sectors with and without 

robots. 

 
 

Note: We classify each occupation into two groups depending on the sector of employment: IFR sector and not 

IFR sector. We use the structure of occupations across sectors provided by Eurostat as occupation weights to 

extrapolate exposure to robots (if managers account for 20% of all workers employed in construction, their 

weight equals 0.2, etc.). The not IFR sectors automatically receive zero weight, as there are no robots (e.g. Real 

estate activities; W_NIFR in the figure); the IFR sectors (agriculture, mining and quarrying, water supply, 

construction, education) receive one level of weight (if 10% of all managers work in agriculture, they receive 0.1 

weight; W_IFR in the figure); and manufacturing, thanks to its more accurate data on robots, receives two levels 

of weights (if 10% of all managers work in manufacturing and 5% of them are employed in the automotive 

industry, they have 0.005 weight; W_C * C_1, etc. in the figure). Weights for the IFR sectors are reweighted to 
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sum up to one. Finally, we end up with two types of managers: managers in the not IFR sectors with null exposure 

to robots and managers in the IFR industries with exposure to robots, given by the formula presented in the 

above figure. 

C2. Counterfactual analysis methodology 

To assess the economic significance of the estimated effects, we perform a counterfactual analysis to 

quantify the effect of robot adoption on labour market flows. In the counterfactual scenario, in each 

country we keep the level of robot exposure between 2004-2017 at the 2004 level. This assumption 

means that new robot installations would have only compensated for the depreciation of robot stock 

and for the aggregate changes in labour force. 

In the first step, we use the coefficients estimated with equation (3) to calculate the predicted 

likelihood of job separation (EU) and job finding (EU) of individual 𝑖 in country 𝑐 and time 𝑡 ≥ 2004. In 

the second step, we use the estimated coefficients (the control function approach, with labour costs 

as a control for the initial conditions in a country) and substitute the actual level of robot exposure 

with its counterfactual value. Formally: 

𝑃𝑟(𝑓𝑙𝑜𝑤 = 1|𝑋)𝑖,𝑜,𝑐,𝑟,𝑡 = 𝛼 ∗ 𝑅𝑖,𝑐,𝑡 + 𝛽 ∗ 𝑋𝑖,𝑐,𝑡 + 𝜖𝑖,𝑐,𝑡 (1) 

𝑃𝑅(𝑓𝑙𝑜𝑤)̂
𝑖,𝑐,𝑡 = α̂ ∗  𝑅𝑖,𝑐,𝑡 + β̂ ∗ X𝑖,𝑐,𝑡 (2) 

Pr (𝑓𝑙𝑜𝑤_𝑐𝑜𝑢𝑛𝑡𝑒𝑟)𝑖,𝑐,𝑡
̂ = α̂ ∗ 𝑅𝑖,𝑐,2004 + β̂ ∗ X𝑖,𝑐,𝑡 (3) 

where 𝑃𝑅(𝐹𝑙𝑜𝑤)̂
𝑖,𝑐,𝑡 is the likelihood of a given flow predicted with the model, 𝑃𝑅(𝐹𝑙𝑜𝑤_𝑐𝑜𝑢𝑛𝑡𝑒𝑟)̂  is 

a counterfactual likelihood of the same flow, and 𝑓𝑙𝑜𝑤 = {𝑒𝑢, 𝑢𝑒}. Then, for each country and year, 

we compute the share of individuals for whom the expected value of the flow is equal to one in a given 

simulation, namely: 

𝑓𝑙𝑜�̂�𝑐,𝑡 =  
∑ 1{𝑓𝑙𝑜𝑤=1}

𝐼𝑐,𝑡
𝑖

𝐼𝑐,𝑡
, 

(4) 

where 𝐼𝑐,𝑡 is the mass of individuals 𝑖 observed for particular flow in country 𝑐 and time 𝑡. 

In the third step, we use estimated probabilities of labour market flows to recursively calculate the 

levels of employment and unemployment flows and stocks, according to the formulas: 

𝐸�̂�𝑐,𝑡 = 𝐸𝑀𝑃𝑐,𝑡 ∗ 𝑒�̂�𝑐,𝑡 (5) 

𝑈�̂�𝑐,𝑡 = 𝑈𝑁𝐸𝑀𝑃𝑐,𝑡 ∗ 𝑢�̂�𝑐,𝑡 (6) 

𝐸𝑀�̂�𝑐,𝑡+1 = {
𝐸𝑀�̂�𝑐,𝑡 −  𝐸�̂�𝑐,𝑡 + 𝑈�̂�𝑐,𝑡 𝑖𝑓 𝑡 ≥ 2004

𝐸𝑀𝑃𝑐,𝑡+1 𝑖𝑓 𝑡 < 2004
 

(7) 

𝑈𝑁𝐸𝑀𝑃̂
𝑐,𝑡+1 = {

𝑈𝑁𝐸𝑀𝑃̂
𝑐,𝑡 + 𝐸�̂�𝑐,𝑡 − 𝑈�̂�𝑐,𝑡  𝑖𝑓 𝑡 ≥ 2004

𝑈𝑁𝐸𝑀𝑃𝑐,𝑡+1 𝑖𝑓 𝑡 < 2004
 

(8) 

where 𝐸�̂�𝑐,𝑡 is an estimated flow from employment to unemployment (job separations), 𝑈�̂�𝑐,𝑡 is an 

estimated flow from unemployment to employment (job findings), 𝐸𝑀�̂�𝑐,𝑡 and 𝑈𝑁𝐸𝑀𝑃̂
𝑐,𝑡 are 

estimated levels of employment and unemployment in country 𝑐 and time 𝑡, respectively. The initial 
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values of 𝐸𝑀�̂�𝑐,𝑡 (𝑈𝑁𝐸𝑀𝑃̂
𝑐,𝑡) are equal to actual employment (unemployment) levels in a particular 

country in 2004. We repeat all computations for predicted and counterfactual (marked with 𝑐𝑓 

superscript) scenarios. 

In the fourth step, we calculate the effect of the robot adoption on the labour market as a difference 

between the counterfactual and predicted scenarios for each year t, normalised with working-age 

population 𝑃𝑂𝑃𝑐,𝑡, namely: 

 ∆𝐸𝑀𝑃𝑐,𝑡 =  
𝐸𝑀�̂�𝑐,𝑡 − 𝐸𝑀𝑃𝑐,𝑡

𝑐𝑓

𝑃𝑂𝑃𝑐,𝑡  
∗ 100 

(9) 

where ∆𝐸𝑀𝑃𝑐,𝑡 stand for the relative impact of robot adoption on employment in country 𝑐 and time 

𝑡 ≥ 2004, respectively. 

Finally, we analyse to what extent the overall effects of robot adoption on employment are driven by 

the impacts on job separations (EU) versus on job findings (UE). To this end, we perform a semi-

counterfactual analysis. To quantify the importance of the job separation channel (JS superscript), we 

multiply the predicted employment stock (𝐸𝑀�̂�𝑐,𝑡
𝑠,𝐽𝑆

) with the counterfactual likelihood of job 

separations (𝑒�̂�𝑐,𝑡
𝑐𝑓

) (likelihood of job finding (𝑢�̂�𝑐,𝑡)), and calculate flows and levels recursively, using 

the formulas: 

𝐸�̂�𝑐,𝑡
𝑠,𝐽𝑆

= 𝐸𝑀�̂�𝑐,𝑡
𝑠,𝐽𝑆

∗  𝑒�̂�𝑐,𝑡
𝑐𝑓

 (10) 

𝑈�̂�𝑐,𝑡
𝑠,𝐽𝑆 = 𝑈𝑁𝐸𝑀𝑃̂

𝑐,𝑡
𝑠,𝐽𝑆 ∗ 𝑢�̂�𝑐,𝑡 (11) 

𝐸𝑀�̂�𝑐,𝑡+1
𝑠,𝐽𝑆  =  {

𝐸𝑀�̂�𝑐,𝑡
𝑠,𝐽𝑆

 − 𝐸�̂�𝑐,𝑡
𝑠,𝐽𝑆

 + 𝑈�̂�𝑐,𝑡
𝑠,𝐽𝑆

 𝑖𝑓 𝑡 ≥  2004 

𝐸𝑀𝑃𝑐,𝑡+1 𝑖𝑓 𝑡 < 2004
 

(12) 

𝑈𝑁𝐸𝑀𝑃̂
𝑐,𝑡+1
𝑠,𝐽𝑆  = {

𝑈𝑁𝐸𝑀𝑃̂
𝑐,𝑡
𝑠,𝐽𝑆  + 𝐸�̂�𝑐,𝑡

𝑠,𝐽𝑆  − 𝑈�̂�𝑐,𝑡
𝐽𝑆 𝑖𝑓 𝑡 ≥ 2004

𝑈𝑁𝐸𝑀𝑃𝑐,𝑡+1 𝑖𝑓 𝑡 < 2004
 

(13) 

where the initial values of 𝐸𝑀�̂�𝑐,𝑡
𝑠,𝐽𝑆 and 𝑈𝑁𝐸𝑀𝑃̂

𝑐,𝑡
𝑠,𝐽𝑆 are the actual employment and unemployment 

levels, respectively, in a particular country in 2004.  

To quantify the job finding channel (JF superscript), we use the counterfactual likelihood of job finding 

and the predicted likelihood of job separation, using the formulas: 

𝐸�̂�𝑐,𝑡
𝑠,𝐽𝐹 = 𝐸𝑀�̂�𝑐,𝑡

𝑠,𝐽𝐹 ∗ 𝑒�̂�𝑐,𝑡 (14) 

𝑈�̂�𝑐,𝑡
𝑠,𝐽𝐹 = 𝑈𝑁𝐸𝑀𝑃̂

𝑐,𝑡
𝑠,𝐽𝐹  ∗ 𝑢�̂�𝑐,𝑡

𝑐𝑓
 (15) 

𝐸𝑀�̂�𝑐,𝑡+1
𝑠,𝐽𝐹 = {

𝐸𝑀�̂�𝑐,𝑡
𝑐,𝑡 − 𝐸�̂�𝑐,𝑡

𝑠,𝐽𝐹 + 𝑈�̂�𝑐,𝑡
𝑠,𝐽𝐹 𝑖𝑓 𝑡 ≥ 2004

𝐸𝑀𝑃𝑐,𝑡+1 𝑖𝑓 𝑡 < 2004
 

(16) 

𝑈𝑁𝐸𝑀𝑃̂
𝑐,𝑡+1
𝑠,𝐽𝐹 = {

𝑈𝑁𝐸𝑀𝑃̂
𝑐,𝑡
𝑠,𝐽𝐹 + 𝐸�̂�𝑐,𝑡

𝑠,𝐽𝐹 − 𝑈�̂�𝑐,𝑡
𝑠,𝐽𝐹 𝑖𝑓 𝑡 ≥  2004 

𝑈𝑁𝐸𝑀𝑃𝑐,𝑡+1 𝑖𝑓 𝑡 < 2004
 

(1 

where the initial values of 𝐸𝑀�̂�𝑐,𝑡
𝑠,𝐽𝐹 and 𝑈𝑁𝐸𝑀𝑃̂

𝑐,𝑡
𝑠,𝐽𝐹 are the actual employment and unemployment 

levels, respectively, in particular country in 2004. 
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For each of semi-counterfactual simulations, we calculate its effect as a relative difference between 

the counterfactual and predicted scenarios, given by: 

Job Separation (JS) Channel:  

∆𝐸𝑀�̂�𝑐,𝑡
𝑠,𝐽𝑆

=  
𝐸𝑀�̂�𝑐,𝑡 −  𝐸𝑀�̂�𝑐,𝑡

𝑠,𝐽𝑆

𝐸𝑀𝑃𝑐,𝑡
∗ 100 

(17) 

Job Finding (JF) Channel:  

∆𝐸𝑀�̂�𝑐,𝑡
𝑠,𝐽𝐹 =  

𝐸𝑀�̂�𝑐,𝑡 −  𝐸𝑀�̂�𝑐,𝑡
𝑠,𝐽𝐹

𝐸𝑀𝑃𝑐,𝑡
∗ 100 

(19) 

Note that because the simulations are calculated recursively, the difference between the 

counterfactual and the sum of semi-counterfactuals may differ from zero, we show this difference as 

a residual. 

Finally, we use these values to assess the contributions of the separation and of the finding channels 

to the estimated effect of robot adoption on employment. We use a covariance-based decomposition, 

originally proposed by Fujita and Ramey (2009), to quantify the contributions of job separation and job 

finding rates to unemployment fluctuations, in line with the following equations: 

𝜎
∆𝐸𝑀�̂�𝑐,𝑡

𝑠,𝐽𝑆
, ∆𝐸𝑀𝑃𝑐,𝑡

=  
𝑐𝑜𝑣(∆𝐸𝑀�̂�𝑐,𝑡

𝑠,𝐽𝑆,  ∆𝐸𝑀𝑃𝑐,𝑡)

𝑣𝑎𝑟( ∆𝐸𝑀𝑃𝑐,𝑡)
 

(20) 

𝜎
∆𝐸𝑀�̂�𝑐,𝑡

𝑠,𝐽𝐹
, ∆𝐸𝑀𝑃𝑐,𝑡

=  
𝑐𝑜𝑣(∆𝐸𝑀�̂�𝑐,𝑡

𝑠,𝐽𝐹 ,  ∆𝐸𝑀𝑃𝑐,𝑡)

𝑣𝑎𝑟( ∆𝐸𝑀𝑃𝑐,𝑡)
 

(18) 
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Appendix D – Additional descriptive evidence and results 

 

Figure D1. Correlation between initial labour costs and robot application within countries 

 

 

 

Note: Scales on Y-axis differ. Robot application shares are calculated in 2016. – Source: authors’ calculations 

based on IFR data.  
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Figure D2: Change in robot exposure at one-digit occupation-level between 2000/2004-2016 

 

Note: The figure displays the changes in robot exposure between 2000/2004 and 2016 in occupation groups 

across all sectors by country. Robot exposure is measured as the number of robots per 1,000 workers. 

Occupations are classified according to the ISCO Standard: 1 Managers; 2 Professionals; 3 Technicians and 

Associates; 4 Clerks; 5 Services and Sales; 6 Agriculture, Fishery, Forestry; 7 Craft and Trade; 8 Machine 

Operators; 9 Elementary Occupations). – Source: authors’ calculations based on the EU-LFS and IFR. 

  



51 
 

Figure D3: Transition rates between employment and unemployment by country, 2000-2018 

 

Note: The figure displays the average transition rates (a) from employment to unemployment and (b) from 

unemployment to employment by country. – Source: authors’ calculations based on the EU-LFS. 
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Heterogeneity by task groups 
Table D1: The effect of robot exposure on the likelihood of job separation – by task group group 

 (1) 

Probit 

(2) 

CF 

(3) 

Probit 

(4) 

CF 

Robot Exposure -0.000 -0.002 0.002 0.001 

 (0.002) (0.005) (0.005) (0.008) 

Robot Exposure X Labour Costs   -0.009*** -0.005 

   (0.003) (0.007) 

Robot Exposure X (Labour Costs)2   0.003 -0.000 

   (0.005) (0.006) 

NRCA X Robot Exposure -0.000 0.000 -0.006 0.008 

 (0.003) (0.005) (0.007) (0.010) 

NRCP X Robot Exposure 0.004 0.000 -0.005 -0.003 

 (0.003) (0.006) (0.008) (0.011) 

RC X Robot Exposure -0.003 -0.003 -0.021*** -0.019** 

 (0.003) (0.005) (0.006) (0.008) 

RM X Robot Exposure -0.001 -0.000 -0.012** -0.007 

 (0.003) (0.005) (0.005) (0.008) 

NRCA X Robot Exposure x Labour Cost   -0.001 -0.005 

   (0.004) (0.008) 

NRCP X Robot Exposure x Labour Cost   0.004 0.001 

   (0.005) (0.008) 

RC X Robot Exposure x Labour Cost   -0.003 -0.003 

   (0.004) (0.008) 

RM X Robot Exposure x Labour Cost   0.003 0.001 

   (0.004) (0.007) 

NRCA X Robot Exposure x (Labour 

Costs)2   0.006 -0.001 

   (0.006) (0.010) 

NRCP X Robot Exposure x (Labour 

Costs)2   0.005 0.006 

   (0.008) (0.010) 

RC X Robot Exposure x (Labour Costs)2   0.017*** 0.018** 

   (0.006) (0.008) 

RM X Robot Exposure x (Labour Costs)2   0.008 0.007 

   (0.005) (0.006) 

NRCA -0.285*** -0.285*** -0.220*** -0.234*** 

 (0.016) (0.017) (0.024) (0.024) 

NRCP -0.386*** -0.382*** -0.333*** -0.333*** 

 (0.020) (0.020) (0.027) (0.028) 

RC -0.171*** -0.169*** -0.124*** -0.124*** 

 (0.012) (0.012) (0.017) (0.018) 

RM 0.078*** 0.077*** 0.104*** 0.093*** 

 (0.021) (0.021) (0.024) (0.026) 

NRCA x Labour Cost   0.155*** 0.163*** 

   (0.016) (0.016) 

NRCP x Labour Cost   0.151*** 0.152*** 

   (0.018) (0.018) 

RC x Labour Cost   0.031* 0.031* 

   (0.016) (0.016) 
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RM x Labour Cost   -0.014 -0.022 

   (0.017) (0.016) 

NRCA x (Labour Costs)2   -0.173*** -0.168*** 

   (0.023) (0.023) 

NRCP x (Labour Costs)2   -0.160*** -0.160*** 

   (0.030) (0.031) 

RC x (Labour Costs)2   -0.077*** -0.078*** 

   (0.023) (0.023) 

RM x (Labour Costs)2   -0.020 -0.007 

   (0.028) (0.029) 

Observations 11.8 M 11.8 M 11.8 M 11.8 M 

Note: The table presents the estimated coefficients of the probit and control function (CF) regressions. 

Standard errors (in brackets) are clustered at the occupation-year level. Country, year, industry group fixed 

effects, and country linear trends are included. Individual-level controls: age group, education group, gender, 

and native/non-native. Aggregate-level controls: global value chain participation, gross value added, the ratio 

of investment added to gross value added, GDP growth, labour demand, and growth in exports. Robot 

exposure is instrumented using robot exposure in the Western European countries in the sample. NRCA – 

Non-routine cognitive analytical; NRCP – Non-routine cognitive interpersonal; RC – Routine cognitive; RM – 

Routine manual; NRM – Non-routine manual physical. NRM is a reference group.*** p<0.01, ** p<0.05, * 

p<0.1. – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, UIBE GVC, 

and O*NET data. 
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Table D2: The effect of robot exposure on the likelihood of job finding – by task group 

 (1) 

Probit 

(2) 

CF 

(3) 

Probit 

(4) 

CF 

Robot Exposure -0.007*** -0.004 0.020** 0.022** 

 (0.003) (0.004) (0.008) (0.011) 

Robot Exposure X Labour Costs   0.015** 0.014* 

   (0.007) (0.008) 

Robot Exposure X (Labour Costs)2   -0.034*** -0.036*** 

   (0.010) (0.012) 

NRCA X Robot Exposure 0.012*** 0.018*** 0.015 0.008 

 (0.003) (0.005) (0.013) (0.017) 

NRCP X Robot Exposure -0.006 0.001 -0.034 -0.034 

 (0.005) (0.010) (0.023) (0.036) 

RC X Robot Exposure 0.011*** 0.013*** 0.031*** 0.021 

 (0.003) (0.005) (0.010) (0.015) 

RM X Robot Exposure 0.006** 0.007 0.000 -0.008 

 (0.003) (0.004) (0.009) (0.011) 

NRCA X Robot Exposure x Labour Cost   0.007 -0.003 

   (0.007) (0.009) 

NRCP X Robot Exposure x Labour Cost   -0.008 -0.007 

   (0.010) (0.015) 

RC X Robot Exposure x Labour Cost   0.009 0.002 

   (0.007) (0.009) 

RM X Robot Exposure x Labour Cost   -0.006 -0.011 

   (0.007) (0.008) 

NRCA X Robot Exposure x (Labour 

Costs)2   -0.007 0.012 

   (0.014) (0.017) 

NRCP X Robot Exposure x (Labour 

Costs)2   0.031 0.044 

   (0.024) (0.037) 

RC X Robot Exposure x (Labour Costs)2   -0.022* -0.005 

   (0.011) (0.016) 

RM X Robot Exposure x (Labour Costs)2   0.010 0.022* 

   (0.010) (0.012) 

NRCA -0.060*** -0.070*** -0.001 0.004 

 (0.017) (0.018) (0.028) (0.029) 

NRCP -0.154*** -0.162*** -0.216*** -0.218*** 

 (0.033) (0.034) (0.051) (0.051) 

RC -0.031*** -0.035*** -0.042** -0.039* 

 (0.011) (0.012) (0.021) (0.022) 

RM -0.084*** -0.083*** -0.135*** -0.111*** 

 (0.015) (0.016) (0.025) (0.026) 

NRCA x Labour Cost   -0.037 -0.018 

   (0.023) (0.026) 

NRCP x Labour Cost   0.048* 0.049* 

   (0.026) (0.027) 

RC x Labour Cost   0.044** 0.049** 

   (0.019) (0.020) 

RM x Labour Cost   -0.030 -0.009 
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   (0.028) (0.026) 

NRCA x (Labour Costs)2   -0.044 -0.071* 

   (0.037) (0.040) 

NRCP x (Labour Costs)2   0.044 0.035 

   (0.046) (0.048) 

RC x (Labour Costs)2   -0.018 -0.028 

   (0.032) (0.033) 

RM x (Labour Costs)2   0.083** 0.047 

   (0.037) (0.037) 

Observations 1.3 M 1.3 M 1.3 M 1.3 M 

Note: See notes to Table D1. *** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, UIBE GVC, and O*NET data.  
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Heterogeneity by age 
Table D3: The effect of robot exposure on the likelihood of job separation – by age group 

 (1) 

Probit 

(2) 

CF 

(3) 

Probit 

(4) 

CF 

Robot Exposure -0.003** -0.007** -0.004* -0.015*** 

 (0.002) (0.003) (0.002) (0.005) 

Robot Exposure X Labour Costs  -0.004***  -0.005** 

  (0.001)  (0.002) 

Robot Exposure X (Labour Costs)2  0.005  0.013** 

  (0.003)  (0.005) 

Age 25-34 X Robot Exposure -0.000 -0.006* -0.005*** -0.006 

 (0.001) (0.003) (0.001) (0.004) 

Age 35-54 X Robot Exposure 0.000 -0.006** -0.002* 0.002 

 (0.001) (0.003) (0.001) (0.004) 

Age 55-70 X Robot Exposure 0.006*** 0.007* 0.007*** 0.030*** 

 (0.002) (0.004) (0.002) (0.006) 

Age 25-34 X Robot Exposure x Labour 

Cost  -0.005***  -0.006*** 

  (0.001)  (0.002) 

Age 35-54 X Robot Exposure x Labour 

Cost  -0.002*  -0.000 

  (0.001)  (0.002) 

Age 55-70 X Robot Exposure x Labour 

Cost  0.004**  0.011*** 

  (0.002)  (0.003) 

Age 25-34 X Robot Exposure x (Labour 

Costs)2  0.006*  0.005 

  (0.004)  (0.005) 

Age 35-54 X Robot Exposure x (Labour 

Costs)2  0.007**  -0.005 

  (0.003)  (0.005) 

Age 55-70 X Robot Exposure x (Labour 

Costs)2  -0.003  -0.031*** 

  (0.004)  (0.007) 

Age 25-34 -0.170*** -0.200*** -0.163*** -0.201*** 

 (0.006) (0.011) (0.006) (0.012) 

Age 35-54 -0.354*** -0.420*** -0.349*** -0.430*** 

 (0.007) (0.013) (0.008) (0.014) 

Age 55-70 -0.350*** -0.414*** -0.355*** -0.446*** 

 (0.011) (0.020) (0.011) (0.019) 

Age 25-34 x Labour Cost  0.093***  0.094*** 

  (0.009)  (0.009) 

Age 35-54 x Labour Cost  0.045***  0.043*** 

  (0.009)  (0.009) 

Age 55-70 x Labour Cost  0.028**  0.023* 

  (0.012)  (0.013) 

Age 25-34 x (Labour Costs)2  0.001  0.005 

  (0.016)  (0.016) 

Age 35-54 x (Labour Costs)2  0.079***  0.095*** 

  (0.016)  (0.017) 
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Age 55-70 x (Labour Costs)2  0.076***  0.116*** 

  (0.023)  (0.022) 

Observations 11.8 M 11.8 M 11.8 M 11.8 M 

Note: The table presents the estimated coefficients of the probit and control function (CF) regressions. 

Standard errors (in brackets) are clustered at the occupation-year level. Country, year, industry group fixed 

effects, and country linear trends are included. Individual-level controls: age group, education group, gender, 

and native/non-native. Aggregate-level controls: global value chain participation, gross value added, the ratio 

of investment added to gross value added, GDP growth, labour demand, and growth in exports. Robot 

exposure is instrumented using robot exposure in the Western European countries in the sample. Aged 15-24 

are a reference group.*** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-KLEMS, 

EU-LFS, Eurostat, IFR, UN Comtrade, UIBE GVC, and O*NET data. 
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Table D4: The effect of robot exposure on the likelihood of job finding – by age group 

 (1) 

Probit 

(2) 

CF 

(3) 

Probit 

(4) 

CF 

Robot Exposure 0.004*** 0.022*** 0.013*** 0.027*** 

 (0.001) (0.005) (0.002) (0.006) 

Robot Exposure X Labour Costs  0.006***  0.005** 

  (0.002)  (0.002) 

Robot Exposure X (Labour Costs)2  -0.022***  -0.022*** 

  (0.005)  (0.007) 

Age 25-34 X Robot Exposure -0.005*** -0.004 -0.011*** -0.011** 

 (0.001) (0.004) (0.002) (0.006) 

Age 35-54 X Robot Exposure -0.006*** -0.004 -0.014*** -0.022*** 

 (0.001) (0.004) (0.002) (0.007) 

Age 55-70 X Robot Exposure -0.011*** -0.020*** -0.023*** -0.051*** 

 (0.002) (0.006) (0.004) (0.008) 

Age 25-34 X Robot Exposure x Labour 

Cost  0.002  0.002 

  (0.002)  (0.002) 

Age 35-54 X Robot Exposure x Labour 

Cost  0.003*  -0.004 

  (0.002)  (0.002) 

Age 55-70 X Robot Exposure x Labour 

Cost  -0.003  -0.012*** 

  (0.003)  (0.004) 

Age 25-34 X Robot Exposure x (Labour 

Costs)2  -0.000  0.005 

  (0.005)  (0.006) 

Age 35-54 X Robot Exposure x (Labour 

Costs)2  -0.003  0.014** 

  (0.005)  (0.007) 

Age 55-70 X Robot Exposure x (Labour 

Costs)2  0.011*  0.038*** 

  (0.006)  (0.008) 

Age 25-34 -0.404*** -0.428*** -0.396*** -0.423*** 

 (0.010) (0.018) (0.010) (0.018) 

Age 35-54 -0.666*** -0.728*** -0.654*** -0.715*** 

 (0.015) (0.025) (0.015) (0.025) 

Age 55-70 -1.098*** -1.161*** -1.081*** -1.139*** 

 (0.022) (0.031) (0.022) (0.031) 

Age 25-34 x Labour Cost  0.098***  0.095*** 

  (0.013)  (0.013) 

Age 35-54 x Labour Cost  0.084***  0.087*** 

  (0.015)  (0.015) 

Age 55-70 x Labour Cost  -0.020  -0.022 

  (0.023)  (0.024) 

Age 25-34 x (Labour Costs)2  -0.019  -0.018 

  (0.024)  (0.024) 

Age 35-54 x (Labour Costs)2  0.043  0.037 

  (0.028)  (0.028) 

Age 55-70 x (Labour Costs)2  0.110***  0.103*** 



59 
 

  (0.034)  (0.035) 

Observations 1.3 M 1.3 M 1.3 M 1.3 M 

Note: See notes to Table D3. *** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

 

 

Robustness  

Figure D4: Effects of robot exposure on likelihood of the flows, regressions with country FE 

Job separation Job finding 

  

Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

employment to unemployment (left panel) and unemployment to employment (right panel), based on 

regressions presented in Table 4 column (3) . Robot exposure is instrumented using the average robot 

exposure in the Western European countries in the sample. Countries on the X-axis are ranked according to 

the initial labour cost (in parentheses). – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, 

Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

 

Figure D5: Effects of robot exposure on likelihood of the flows, regressions without controls for 

value added and gross fixed capital formations  

Job separation Job finding 

  

Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

employment to unemployment (left panel) and unemployment to employment (right panel), based on 

regressions presented in Table 4 column (4) . Robot exposure is instrumented using the average robot 

exposure in the Western European countries in the sample. Countries on the X-axis are ranked according to 
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the initial labour cost (in parentheses). – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, 

Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

 

Table D5: The effect of robot exposure on the likelihood of job separation, initial development 

proxied with GDP 
 (1) (2) (3) (5) 

 Probit CF Probit CF 

A: All Sectors     

Robot Exposure -0.003** -0.005*** -0.010*** -0.009*** 

 (0.001) (0.001) (0.002) (0.002) 

Robot Exposure X GDP per capita   -0.008*** -0.005*** 

   (0.001) (0.002) 

Robot Exposure X (GDP per capita)2   0.021*** 0.012** 

   (0.004) (0.005) 

No. of observations 11.8 M 11.8 M 11.8 M 11.8 M 

Kleibergen-Paap F-statistic for weak 

identification 

 372 874.1  22 886.2 

B: Manufacturing     

Robot Exposure -0.001 -0.006*** -0.008*** -0.008*** 

 (0.001) (0.002) (0.002) (0.003) 

Robot Exposure X GDP per capita   -0.006*** -0.000 

   (0.002) (0.002) 

Robot Exposure X (GDP per capita)2   0.019*** 0.006 

   (0.007) (0.008) 

No. of Observations 2.6 M 2.6 M 2.6 M 2.6 M 

Kleibergen-Paap F-statistic for weak 

identification 

 197 835.2  13 977.7 

Note: See notes to Table B1. *** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

 

Table D6: The effect of robot exposure on the likelihood of job finding, initial development proxied 

with GDP 
 (1) (2) (3) (5) 

 Probit CF Probit CF 

A: All Sectors     

Robot Exposure -0.002 0.002 0.007*** 0.003 

 (0.001) (0.001) (0.002) (0.002) 

Robot Exposure X GDP per capita   0.007*** -0.001 

   (0.002) (0.003) 

Robot Exposure X (GDP per capita)2   -0.024*** -0.005 

   (0.005) (0.006) 

No. of Observations 1.3 M 1.3 M 1.3 M 1.3 M 

Kleibergen-Paap F-statistic for weak 

identification  

 25 778.1  3 187.2 

B: Manufacturing     

Robot Exposure 0.000 0.002 0.003 0.002 

 (0.001) (0.002) (0.003) (0.003) 
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Robot Exposure X GDP per capita   0.001 -0.006** 

   (0.002) (0.003) 

Robot Exposure X (GDP per capita)2   -0.007 0.002 

   (0.007) (0.009) 

No. of Observations 260 180 260 180 260 180 260 180 

Kleibergen-Paap F-statistic for weak 

identification  

 14 791.2  2 236.7 

Note: See notes to Table B1. *** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data.  
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Figure D6: Marginal effects of robot exposure on the likelihood of job separation, initial 

development proxied with GDP 

A: All industries B: Manufacturing 

  
Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

employment to unemployment. The vertical lines represent the 95% confidence intervals. Robot exposure is 

interacted with GDP per capita in 2004. The results are obtained by instrumenting robot exposure with robot 

exposure in the Western European countries in the sample. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

 

Figure D7: Marginal effects of robot exposure on the likelihood of job finding, initial development 

proxied with GDP 

A: All industries B: Manufacturing 

  
Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

unemployment to employment. The vertical lines represent the 95% confidence intervals. Robot exposure is 

interacted with GDP per capita in 2004. The results are obtained by instrumenting robot exposure with robot 

exposure in the Western European countries in the sample. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 
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Table D7: The effect of percentiles of robot exposure on the job separation likelihood 

 (1) (2) (3) (4) 

 Probit CF Probit CF 

      

Percentile Robot Exposure -0.095*** 

[0.022] 

-0.247*** 

[0.032] 

-0.110*** 

[0.026] 

-0.292*** 

[0.042] 

Percentile Robot Exposure X Labour Costs 2004  

 

 

 

-0.025 

[0.019] 

0.025 

[0.024] 

Percentile Robot Exposore X Squared Labour Costs 

2004 

 

 

 

 

0.037 

[0.027] 

0.040 

[0.034] 

No. of Observations 11.8 M 11.8 M 11,8 M 11.8 M 

Kleibergen-Paap F-statistic for weak identification  8.5 M  2.2 M 

Note: See notes to Table B1. *** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 

Table D8: The effect of percentiles of robot exposure on the job finding likelihood 
 (1) (2) (3) (4) 

 Probit CF Probit CF 

      

Percentile Robot Exposure -0.022 

[0.023] 

0.015 

[0.038] 

0.133*** 

[0.038] 

0.076 

[0.062] 

Percentile Robot Exposure X Labour Costs 2004  

 

 

 

0.150*** 

[0.043] 

-0.031 

[0.044] 

Percentile Robot Exposore X Squared Labour Costs 

2004 

 

 

 

 

-0.281*** 

[0.055] 

-0.061 

[0.067] 

No. of Observations 1.3 M 1.3 M 1.3 M 1.3 M 

Kleibergen-Paap F-statistic for weak identification  771 655.9  187 741.6 

Note: See notes to Table B1. *** p<0.01, ** p<0.05, * p<0.1. – Source: authors’ calculations based on the EU-

KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC data. 
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Figure D8: Marginal Effects of Percentiles of Robot Exposure for job separation/job finding likelihood 

   

Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

employment to unemployment (left panel) and unemployment to employment (right panel), based on 

regressions presented in Table D7 and D8 column (4). The vertical lines represent the 95% confidence 

intervals. Robot exposure is instrumented using the percentiles of the average robot exposure in the Western 

European countries in the sample. Countries on the x-axis are ranked according to the initial labour cost (in 

parentheses).-Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and 

UIBE GVC data. 

 

Figure D9: Marginal effects of robot exposure on the likelihood of job separations and finding, by 

age group in manufacturing 
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Note: Marginal effects of robot exposure on the probability of job separation and job finding at different 

development levels measured by labour costs in 2004. The vertical lines represent the 95% confidence intervals. 

Countries on the x-axis are displayed in ascending order of labour costs in 2004 (for details, see Table A1). Robot 

exposure is instrumented using robot exposure in the Western European countries in the sample. For regression 

estimates, see Tables D3 and D4 in Appendix D. – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, 

Eurostat, IFR, UN Comtrade, and UIBE GVC data. 
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Figure D10: Effects of robot exposure on likelihood of the flows, clusters by country, occupation, and 

year 

Job separation Job finding 

  

Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

employment to unemployment (see also Figure 5) and probability of transitioning from unemployment to 

employment (see also Figure 6) with standard errors clustered at country-occupation-year level. The vertical lines 

represent the 95% confidence intervals. Robot exposure is instrumented using the average robot exposure in the 

Western European countries in the sample. Countries on the x-axis are ranked according to the initial labour cost 

(in parentheses). Figure B1 in the appendix presents the marginal effects with the linear labour costs scale on 

the x-axis. – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE 

GVC data. 

 

Figure D11: Effects of robot exposure on likelihood of the flows, clusters by sector and year 

Job separation Job finding 

  

Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

employment to unemployment (see also Figure 5) and probability of transitioning from unemployment to 

employment (see also Figure 6) with standard errors clustered at sector-year level. The vertical lines represent 

the 95% confidence intervals. Robot exposure is instrumented using the average robot exposure in the Western 

European countries in the sample. Countries on the x-axis are ranked according to the initial labour cost (in 

parentheses). Figure B1 in the appendix presents the marginal effects with the linear labour costs scale on the x-

axis. – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC 

data. 

  



67 
 

Figure D12: Marginal effects of robot exposure on the likelihood of job separation, estimated with 

linear probability model 

A: All Sectors B: Manufacturing 

Interaction with labour cost 

  
Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

employment to unemployment based on regressions presented in Table 1, columns (2) and (4). The vertical lines 

represent the 95% confidence intervals. Robot exposure is instrumented using the average robot exposure in the 

Western European countries in the sample. Countries on the X-axis are ranked according to the initial labour cost 

(in parentheses). Figure B1 in the appendix presents the marginal effects with the linear labour costs scale on 

the x-axis. – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE 

GVC data. 

Figure D13: Marginal effects of robot exposure on the likelihood of job finding, estimated with linear 

probability model 

A: All Sectors B: Manufacturing 

Interaction with labour costs 

  

Note: The figures show the marginal effects of robot exposure on the probability of transitioning from 

unemployment to employment based on the regressions presented in Table 2. The vertical lines represent the 

95% confidence intervals. The robot exposure is instrumented using robot exposure in the Western European 

countries in the sample. Countries on the X-axis are displayed in ascending order of initial labour cost (in 

parentheses). Figure B1 in the appendix presents the marginal effects with the linear labour costs scale on the x-

axis. – Source: authors’ calculations based on the EU-KLEMS, EU-LFS, Eurostat, IFR, UN Comtrade, and UIBE GVC 

data. 
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