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Abstract 

This paper examines the impact of industrial robot adoption on household income inequality in 14 

European countries between 2006 and 2018. Automation reduced relative wages, employment, and 

market incomes of more exposed demographic groups. However, feeding these automation-

induced wage and employment shocks into the EUROMOD microsimulation model shows that their 

effect on inequality in disposable household income was small. Tax-benefit systems, particularly 

transfers, largely absorbed the disequalizing labor income shocks caused by automation. 

Household labour income diversification cushioned the automation-induced labour income 

shocks, but played a limited role for inequality. 
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The rapid automation of job tasks raises concerns about its consequences for worker welfare and 

income inequality. A large literature documents that technologies replacing routine tasks tend to 

disadvantage lower-wage workers while benefiting those in non-routine, high-skill jobs, thereby 

widening wage inequality. Evidence from the United States indicates that robot adoption led to 

sizable job and wage losses among lower-paid workers (Acemoglu and Restrepo, 2022). Whether 

similar dynamics operate in Europe remains an open question. European labour markets feature 

stronger employment protection, more extensive redistribution, and higher union coverage, which 

may alter both the magnitude of automation-driven labour market shocks and how these shocks 

translate into household living standards. 

This paper assesses the distributional impact of automation by examining not only wages and 

employment, but also household incomes. Automation affects workers through changes in earnings 

and employment probabilities; however, household income inequality ultimately depends on how 

these shocks are transmitted through income pooling within households and redistribution via taxes 

and transfers. Household labour income diversification may mitigate individual losses, for example, 

through added-worker effects, or amplify them when exposure to a shock is positively correlated 

across household members. At the same time, progressive tax-benefit systems can cushion labour 

market shocks, particularly those operating through employment losses. The net impact of 

automation on household income inequality is therefore theoretically ambiguous and must be 

determined empirically. 

We study the impact of industrial robot adoption on household income inequality in 14 European 

countries between 2006 and 2018. We combine econometric estimates of automation’s effects on 

wages, employment and households’ market incomes, with microsimulation methods to trace their 

transmission to household disposable incomes and inequality. Following Acemoglu and Restrepo 

(2022), we define 30 demographic groups per country by age, gender, and education, and estimate 

the causal effects of robot exposure using an instrumental-variable strategy based on robot adoption 

trends in technologically advanced European countries outside our sample. We then construct 

counterfactual wage and employment levels for 2018 under constant robot exposure and feed these 

into the EUROMOD tax-benefit model. Comparing observed and counterfactual income 

distributions enables us to quantify the contribution of automation to income inequality and to 

disentangle the roles of wage and employment channels, household income diversification, and tax-

benefit systems in shaping distributional outcomes. 
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1 Literature and contribution 

Automation-driven labor market shocks affect workers through changes in employment 

probabilities, wages, and task composition. A large literature documents these effects at the 

individual, occupational, sectoral, or regional level (Acemoglu and Restrepo, 2020; Graetz and 

Michaels, 2018). In the US, task-displacing automation reduced employment and contributed 

approximately two-thirds of changes in wage inequality (Acemoglu and Restrepo, 2022, 2020). 

However, in other highly developed countries, such as Germany or Japan, the employment effects 

of robots have been neutral or positive (Adachi et al., 2024; Dauth et al., 2021). Beyond potential 

aggregate effects, automation creates winners and losers. Across high-income countries, it 

increased productivity and reduced employment shares of low-skilled workers in routine 

occupations (Chung and Lee, 2023; de Vries et al., 2020; Graetz and Michaels, 2018), benefiting 

younger workers and prime-aged women at the expense of older workers and prime-aged men 

(Albinowski and Lewandowski, 2024). 

Yet, the impact of automation on household incomes and its distributional consequences remain 

under-researched. Filling this gap is important since the increase in income inequality has been 

driven primarily by the surge in labor income inequality (Acemoglu and Robinson, 2015). It is also 

essential from a policy perspective. Headline indicators of living standards, such as the at-risk-of-

poverty rate and the Gini index, rely on household incomes, particularly on equivalised household 

disposable incomes adjusted for household size and composition, which account for income 

pooling and economies of scale within households. These measures form the basis for redistribution 

through the tax and transfer system, assessing households’ ability to meet basic needs, and 

monitoring risks to social cohesion arising from polarisation in living standards. 

Since inequality is ultimately experienced at the household level, it is shaped by income pooling and 

diversification of income sources of household members and by redistribution through tax-benefit 

systems.  Labor market shocks do not map mechanically into household income inequality. 

Understanding the distributional consequences of automation requires (i) quantifying its impact on 

wages and employment, (ii) tracing how individual-level shocks propagate through households, and 

(iii) evaluating how public policy cushions their impact on disposable incomes and inequality. 

Both wage and employment reductions hurt workers’ welfare, but their distributional consequences 

usually differ. Wage declines tend to compress the income distribution since they generally reduce 

the income gap between the employed and non-employed subpopulations. Employment losses, 

however, increase the number of households with jobless individuals, widening inequality. Thus, the 
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first step of our study is to estimate the wage and employment effects of automation, specifically 

industrial robots, in European countries. 

Within households, three key mechanisms shape the impact of automation-driven shocks on 

disposable income. First, because household income is the sum of labor incomes from possibly 

multiple earners, how much labor shocks transfer to household income depends on the correlation 

in the exposure of household members to shocks. Negatively correlated income sources could in 

principle offset individual labor income shocks. In contrast, positive assortative mating by 

occupation and education tends to increase the correlation of labor market risks (Greenwood et al., 

2014). European evidence shows strong assortative matching in terms of education, occupation, 

and earnings (Esteve et al., 2016). This increases the sensitivity of household incomes to sectoral or 

occupational shocks and limits the insurance role of household-level income pooling. 

Second, households may respond to adverse labor market shocks by adjusting the labor supply of 

unaffected members. The added-worker effect predicts that secondary earners, often women, 

increase their labor supply when the primary earner experiences a job loss or an earnings decline 

(Bargain et al., 2014; Lundberg, 1985). Such adjustments can partially offset income losses and 

mitigate increases in household inequality, although their strength depends on labor market 

institutions and gender norms. 

Third, household size and composition influence the transmission of individual shocks to 

equivalised incomes. The number of earners and the presence of children and other dependent 

individuals shape the scope for intra-household risk sharing (OECD, 2011; Shore, 2010). 

Automation-driven labor market shocks affecting prime-age earners in single-earner households are 

likely to have stronger distributional consequences than similar shocks in dual-earner households 

with diversified income sources.1  

Tax-benefit systems constitute the final, critical layer of adjustment. Progressive taxation 

compresses post-tax wage and income distributions (Guvenen et al., 2014; OECD, 2011) and 

mitigates the disequalising effects of wage dispersion. At the same time, transfers, particularly 

unemployment benefits and social assistance, act as automatic stabilizers that cushion 

employment losses and prevent sharp declines in household incomes during labor market 

disruptions (Dolls et al., 2012; OECD, 2011). 

The relative importance of taxes versus transfers depends on the nature of automation shocks and 

the design of safety nets. Adverse wage shocks are primarily offset by tax progressivity, whereas 

 
1 In the long-run, shocks may also influence the distribution of household structures (Anelli et al., 2024). 
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employment losses generate discrete income drops that rely more heavily on benefit systems for 

insurance. Since automation-driven labor market shocks can also increase non-participation (Di 

Giacomo and Lerch, 2026), it is essential to account for the entirety of safety nets. Cross-country 

variation in benefit generosity, eligibility, and replacement rates (Dolls et al., 2022; Doorley et al., 

2021; OECD, 2011) may therefore translate into heterogeneous inequality responses to automation.  

In sum, while automation can substantially affect employment and wages, its impact on household 

disposable income inequality depends on household income diversification and redistributive tax-

benefit institutions that jointly attenuate the transmission of labor market shocks into household 

inequality. Differences in assortative mating, household structures, and welfare state design imply 

that the distributional impact of automation is inherently country-specific. This motivates our 

empirical strategy: integrating the econometric identification of the labor market effects with 

country-specific microsimulation models calibrated with countries’ parameters of tax-benefit 

system, which shed light on the transmission of automation-induced labor market shocks to 

household incomes and the cushioning role of tax-benefit systems. 

This paper makes two contributions. First, we provide causal evidence of the medium-term effects 

of automation with industrial robots on wages, employment, and household income in a European 

cross-country setting. These effects may differ from those estimated for the US (Acemoglu and 

Restrepo, 2022) due to substantial differences in labor market institutions, including more binding 

minimum wages, higher collective bargaining coverage, stronger unions, and higher employment 

protection in Europe (Bhuller et al., 2022). Indeed, the effects of robot adoption in Germany are 

substantially smaller than in the US (Dauth et al., 2021). Routine-replacing technologies more 

generally led to small net employment gains in Europe, thanks to product demand effects (Gregory 

et al., 2022). Using plausibly exogenous variation in robot penetration, we demonstrate that in 

Europe, demographic groups more exposed to robots experienced moderate declines in wages and 

employment.2 These effects are robust to controlling for potential confounders and cross-country 

differences in key labor market institutions, such as minimum wage policies. 

 
2 Studies focusing on the within-sector effects showed that robots reduce the employment shares of lower-
skilled (Graetz and Michaels, 2018) and of male routine (Albinowski and Lewandowski, 2024; de Vries et al., 
2020) workers, suggesting disequalising impacts of automation. However, such within-sector or within-
occupation effects can be partly driven by changes in worker sorting over time (Böhm et al., 2024). Our 
approach of utilising variation in robot penetration across demographic groups is more immune to this problem 
as it captures the impacts resulting from automation-driven changes in employment composition within 
demographic groups. Using this framework, Lewandowski and Szymczak (2025) found that robots contributed 
to the rise of atypical employment in Europe. We discuss the methodological aspects in more detail in Section 
3. 
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Our second contribution is to quantify the contribution of automation-driven labor market shocks to 

national household income inequality. We assess the overall distributive effect of automation across 

European countries, distinguishing between the wage and employment channels.3 We use country-

specific microsimulation models to evaluate the role of diversification of labor income sources 

within households and of the tax-benefit systems in mitigating the transmission of automation-

driven shocks into disposable income inequality. There is little direct evidence on this issue to date, 

although Bessen et al. (2025) found that benefits cushion the incomes of workers who lose jobs in 

the aftermath of robot adoption in the Netherlands. We show that the role of benefits in mitigating 

automation-driven shocks is generally larger than that of taxes, although it varies across countries. 

As such, we contribute to the literature on the role of tax and benefit systems in cushioning economic 

shocks. Blundell et al. (2018) argued that the UK tax and benefit system counteracted labor and 

marriage market changes in 1980–2015 more effectively than the US system. Dolls et al. (2012) 

showed that such automatic stabilization is stronger in Europe than in the US. 

2 Data and Measurement 

Our analysis covers fourteen countries: Belgium, France, Germany, the Netherlands, Sweden 

(Western European countries), Bulgaria, Czechia, Estonia, Hungary, Latvia, Lithuania, Poland, 

Romania, and Slovakia (Eastern European countries). This sample includes seven of 10 countries 

with the highest increase in robot exposure in Europe (Appendix Figure B.1).4 

2.1 Data sources 

Our sources of worker-level data are the cross-country European Union Structure of Earnings Survey 

(EUSES), the EU Labour Force Survey (EU-LFS), and the EU Statistics on Income and Living 

Conditions (EU-SILC). The EU-SES is a linked employer-employee survey and the most 

comprehensive survey of earnings in the EU. It provides representative and harmonized information 

on employees in firms with at least 10 workers, and includes detailed, two-digit sector information 

(NACE Rev. 2.1). The EU-LFS is the primary EU survey on employment outcomes, covering all 

workers. The EU-SILC is the primary EU survey of incomes, including both market and non-market, 

before and after taxation, at the individual and household levels.  

 
3 The related literature on drivers of cross-national differences in income inequality examines broad drivers 
such as tax-benefit systems (Paulus and Tasseva, 2020), employment and wage changes (Doorley et al., 
2021), or demographic change (Dolls et al., 2019). 

4 We omit Southern European countries as they recorded a severe recession during the studied period. The 
omission of other EU countries reflects the unavailability of some data. 
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The demographic group is our main unit of analysis. For each country, we define 30 demographic 

groups by gender (men and women), education (low – levels 0-2 of the International Standard 

Classification of Education, ISCED; middle – levels 3-4 of ISCED; and high – level 5 of ISCED), and 

age (10-year age groups: 20–29, 30–39, 40–49, 50–59, 60+). We examine the period from 2006 to 

2018.5 We calculate all outcomes by demographic group and country in 2006 and 2018. 

We use the EU-SES data to calculate average gross real hourly wages by dividing gross monthly 

earnings by the number of paid hours worked in the reference month. These earnings include 

overtime pay, special payments for shift work, compulsory social contributions, and taxes. However, 

they exclude irregular, ad hoc bonuses and other payments that do not occur on a regular basis. We 

use the EU-LFS to calculate employment rates. 

Finally, we use the EU-SILC to calculate income measures. Household market income refers to all 

household members’ total labor income (excluding employer social insurance contributions), 

capital income, private pensions and private transfers, i.e., income before taxes and benefits. 

Disposable income is obtained by adding public pensions and social transfers, and deducting taxes 

and social security contributions. Household-level social transfers, taxes and social security 

contributions are simulated using the tax-benefit microsimulation model EUROMOD (Sutherland 

and Figari, 2013), according to national tax-benefit rules applied to respondents’ household market 

incomes and composition as observed in EU-SILC. Appendix C provides more details on 

EUROMOD.6 Household disposable incomes are expressed in single-adult equivalents to account 

for economies of scale in consumption across households of different sizes using the scale 

recommended by Eurostat.7 

2.2 Robot penetration and automation-induced task displacement 

We use data on industrial robots from the International Federation of Robotics (IFR, 2021), which 

provides annual information on the stock and the deliveries of industrial robots by country and 

industry.8 

 
5  The EU-SES has been conducted every four years since 2002, but the 2002 data for Estonia, Latvia, and 
Hungary are incomplete. The EU-SILC was established in 2004, but it covers most EU countries from 2005 
onwards. 
6  We use version I4.0 of EUROMOD with datasets based primarily on the EU-SILC 2006 and 2018 
waves. 
7 Total household disposable income is divided by the number of consumption units calculated as 1−0.5(a− 
1)+0.3c (with a and c the number of individuals aged, respectively above and below, 15 in the household). 
8  According to the International Organization for Standardization (ISO 8373:201), an industrial robot is an 
“automatically controlled, reprogrammable, multipurpose manipulator, programmable in three or more axes, 
which can be either fixed in place or mobile for use in industrial automation applications.” 
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We use the adjusted robot penetration to measure automation, following Acemoglu and Restrepo 

(2020), and distinguishing fourteen industries: 

(1) 
 𝐴𝑃𝑅𝑖,𝑐 =

𝑀𝑖,𝑐,2018 −𝑀𝑖,𝑐,2006

𝐿𝑖,𝑐,2006
−
𝑌𝑖,𝑐,2018 − 𝑌𝑖,𝑐,2006

𝑌𝑖,𝑐,2006
⋅
𝑀𝑖,𝑐,2006

𝐿𝑖,𝑐,2006
 

where Mi,c,t represents the robot stock in industry i in country c in year t, Li,c,2006 represents the initial 

employment level in industry i and country c, and Yi,c,t represents real output of sector i in country c 

in year t. 

The first term captures the increase in robots used per worker in the industry i. Since employment in 

2018 is endogenous to robot adoption, we use the initial (2006) employment levels as 

denominators. The second term adjusts for the overall change in industry i output, specifically to 

account for some industries’ secular decline or growth. Hence, the adjusted penetration of robots, 

APRi,c, reflects the increase in robots installed per worker above the output change in industry i and 

country c between 2006 and 2018.9 

Finally, following Acemoglu and Restrepo (2022), for each demographic group g and country c, we 

construct the measure of task displacement due to automation (robot penetration) as 

(2) 𝑇𝐷𝐴𝑔,𝑐 =∑ω𝑔,𝑐
𝑖

𝑖∈𝐼

⋅ (ω𝑔,𝑖,𝑐
𝑅 /ω𝑖,𝑐

𝑅 ) ⋅ 𝐴𝑃𝑅𝑖,𝑐 

which comprises three terms: 

• group’s g exposure to different industries, ωg,c
i , given by the share of industry i in total 

earnings of workers in group g in country c; 

• the relative specialization of group g in the industry i routine occupations (where 

displacement is assumed to take place), ; 

• the adjusted penetration of robots in industry i in country c, APRi,c. 

The task displacement measure, TDAg,c, is a weighted exposure to adjusted robot penetration – the 

sector structure of the group’s g total earnings serves as the first weight, and the group’s g shares in 

routine jobs in particular sectors are the second weight (calculated with the EU-SES data). We define 

routine occupations at the 2-digit level of the International Standard Classification of Occupations 

(ISCO) and apply the typology of Lewandowski et al. (2020) based on the Occupational Information 

Network (O*NET) data.  

 
9  This adjustment is critical in our cross-country sample that includes Western European countries with 
moderate growth rates and Central Eastern European countries which were growing faster and converging with 
Western Europe thanks to rising total factor productivity and capital accumulation (Żuk and Savelin, 2018). 
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The construction of the task displacement measure is motivated by task-based models proposed by 

Acemoglu and Autor (2011). Robots can perform routine tasks only. Hence, the demand for workers 

from a particular demographic group is directly affected by robot adoption in a given sector only to 

the extent that they specialize in routine tasks. Importantly, the between-group variation in TDAg,c 

derives not only from differences in average task displacement across each particular characteristic 

(country, age, education, and gender), but also from how these factors jointly influence the extent to 

which groups are exposed to automation.  

Similarly, we construct industry shifters as weighted averages of changes in sectoral value added 

using the shares of various sectors in a demographic group’s employment structure as weights. We 

take logs of one plus TDAg,c, to account for a skewed distribution of task displacement.10 

2.3 Descriptive statistics 

Table 1 presents the sample averages of variables used to assign workers to socio-demographic 

groups, and of those used in regressions. Most of the workers in our sample are secondary educated, 

and most are prime-aged. Manufacturing accounted for 27% of total employment. On average, 

workers in our sample experienced wage growth of 26 log points between 2006 and 2018, while 

employment rates increased slightly (by 4 pp). They were exposed to a 21 log points increase in real 

value added (average industry shifter), and a large increase in robot penetration. 

  

 
10 We add a small constant because some groups experienced a slight decrease in the exposure to robots. 
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Table 1. Descriptive statistics 

Dependent Variables 
Mean 

Standard 
Deviation  Observations 

Log wage growth 
0.26 0.30 420 

Employment rate change 0.04 0.07 420 

Task Displacement 
Automation: penetration of robots 0.83 0.59 420 

Control Variables 
Gender: woman 0.48 0.50 420 

Gender: man 0.52 0.50 420 

Basic education 0.15 0.36 420 

Secondary education 0.56 0.50 420 

Tertiary education 0.29 0.45 420 

Age: 20-29 0.19 0.39 420 

Age: 30-39 0.27 0.44 420 

Age: 40-49 0.28 0.45 420 

Age: 50-59 0.22 0.41 420 

Age: 60+ 0.05 0.21 420 

Initial wages 1.59 0.98 420 

Industry shifters 0.21 0.15 420 

Manufacturing share 0.27 0.13 420 

Not elsewhere classified manufacturing share 0.04 0.02 420 

Notes: We weigh observations by their within-country employment shares. The sources and 
description of the variables can be found in Appendix Table A.1. Detailed descriptive statistics for 
all variables for the whole sample are presented in Appendix Table A.2. 
 

3 Empirical Strategy 

Our analysis proceeds in three steps. First, we estimate the impact of automation on wages, 

employment rates and household incomes of demographic groups. Second, we use the estimated 

coefficients to construct counterfactual wages and employment rates for 2018, assuming that robot 

penetration had remained at its 2006 level in each country and industry. Third, we evaluate the 

impacts on household income inequality and the cushioning role of tax and benefit systems by 

feeding these counterfactuals into the EUROMOD microsimulation model. 
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3.1 Effects of automation on labour market outcomes 

We estimate the impact of automation on wages using the following specification: 

(3) 
Δ ln𝑤𝑔,𝑐 = ρ ⋅ ln𝑤𝑔,𝑐

2006 + β ⋅ 𝑇𝐷𝐴𝑔,𝑐 + κ ⋅ 𝑋𝑔,𝑐 + α𝑒𝑑𝑢(𝑔,𝑐) + γ𝑔𝑒𝑛𝑑𝑒𝑟(𝑔,𝑐)

+ η𝑐𝑜𝑢𝑛𝑡𝑟𝑦(𝑔,𝑐) + ν𝑔,𝑐 

where ∆ln wg,c denotes the log change in real hourly wages for demographic group g in country c 

between 2006 and 2018. The coefficient of interest, β, captures the wage response to a 1% increase 

in automation, TDA. We control for initial wage levels, country fixed effects, ηcountry(g,c), gender and 

education fixed effects (γgender(g,c) and αedu(g,c)), and additional controls (Xg,c) of exposure to 

manufacturing and industry shifters. Industry shifters absorb labor demand changes driven by 

sectoral expansion, while group-specific shifters capture changes in wage premia related to gender, 

education, and working in manufacturing. We weight regressions by groups’ employment shares so 

that weights sum to one within each country. 

We apply the same framework to employment rates, household incomes and size, using changes 

rather than log changes for employment rates and household size. 

Since robot adoption may respond to unobserved shocks that also affect labour demand, we 

instrument robot penetration using the approach of Acemoglu and Restrepo (2020). Specifically, we 

instrument the robot penetration in a given industry with an average penetration in the same industry 

among technologically advanced European countries not included in our sample, e: 11 

(4) 𝐴𝑃𝑅𝑖
𝐼𝑉 =

1

5
∑[

𝑀𝑖,𝑒,2018 −𝑀𝑖,𝑒,2006

𝐿𝑖,𝑒,2006
−
𝑌𝑖,𝑒,2018 − 𝑌𝑖,𝑒,2006

𝑌𝑖,𝑒,2006
⋅
𝑀𝑖,𝑒,2006

𝐿𝑖,𝑒,2006
]

5

𝑒=1

 

Our baseline instrument draws on Slovenia, Austria, Denmark, Finland, and the United Kingdom, 

while robustness checks utilize alternative instruments based on Acemoglu and Restrepo (2020)12 

and robot adoption in the US, following Albinowski and Lewandowski (2024). 

We adopt the demographic-group approach of Acemoglu and Restrepo (2022), which aggregates 

outcomes by gender, age, and education groups and estimates long-run differences. Unlike industry-

level (Aksoy et al., 2021; Albinowski and Lewandowski, 2024; de Vries et al., 2020; Graetz and 

Michaels, 2018) or regional-level (Acemoglu and Restrepo, 2020; Dauth et al., 2021) approaches, 

this framework captures adjustment through cross-industry and cross-regional mobility of workers, 

 
11  Instrumenting robot adoption in European countries with adoption in peer countries is widely used 
(Bachmann et al., 2024; Damiani et al., 2023; Dauth et al., 2021; Matysiak et al., 2023; Nikolova et al., 2024). 

12 Denmark, Finland, France, Italy, and Sweden. 
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and is well suited to studying wage and income inequality, including household-level outcomes.13 

Importantly, the effects identified by comparing demographic groups are less likely to be driven by 

changes in worker sorting than those identified by comparing sectors (Böhm et al., 2024). Compared 

to the firm-level, event-study approach (Acemoglu et al., 2025; Barth et al., 2026; Bessen et al., 

2025, 2020; Koch et al., 2021), the demographic-group framework is less precise in identifying direct 

exposure to automation, but allows capturing impacts on all workers in exposed jobs, since robots 

may reduce workers’ power and affect wages outside the robot-adopting firms. In our context, it is 

an important advantage.  

The main limitation of the demographic-group framework is that education is fixed by construction, 

thereby preventing analysis of automation-induced educational upgrading (Di Giacomo and Lerch, 

2023). In our context, this limitation is unlikely to be important, as educational attainment changes 

little among working-age individuals over a 12-year horizon. 

Finally, we focus on labor income and abstract from capital income channels for three reasons. First, 

the available survey data measure capital income poorly and underrepresent top-income 

households (Bartels and Waldenström, 2021). Second, the data do not provide sufficient 

information on household asset portfolios to link them to automation exposure. Third, capital 

income represents a small share of disposable income for most households,14 while labour income 

remains the dominant channel through which automation affects living standards. 

3.2 Microsimulation of disposable income inequality 

In the second stage, we evaluate the contribution of automation to disposable household income 

inequality. We begin by calculating the estimated wage and employment impacts of automation for 

each demographic group g and country c – as βˆw·TDAg,c for wage growth, and βˆe·TDAg,c for 

employment change – and ‘injecting’ them into the 2018 EU-SILC microdata. 

To simulate wage effects, we divide the 2018 hourly wages of demographic group g in country c by 

(1+βˆw·TDAg,c), generating counterfactual wages that would have prevailed absent post-2006 robot 

adoption. We then reweight these counterfactuals by the share of workers employed in firms with at 

least 10 employees (based on the EU-LFS data, see Appendix Figure D.1) to reflect that robot 

adoption primarily occurs in larger firms. As a robustness check, we also simulate an upper-bound 

scenario in which all workers are affected (Appendix D). We aggregate counterfactual wages into 

 
13 The regional-level approach is also unfeasible with the EU surveys because the regional information is highly 
aggregated. 

14 The 2018 EU-SILC data shows that capital income represents less than 10% of disposable income 
in all 14 countries in our sample and less than 5% of disposable income in 10 of them. 
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annual labour incomes at the household level and recompute taxes, social security contributions, 

and transfers using the 2018 EUROMOD tax-benefit rules. We leave non-labor incomes 

unchanged.15 Differences between inequality measures (the Gini index) calculated on observed and 

simulated household incomes capture the distributive impact of automation through wages. 

To simulate employment effects, we reweight each respondent in the 2018 EU-SILC with: 

(5) 𝐸𝑖
𝑒𝑟𝑔,𝑐

(1 + β𝑒̂ ⋅ 𝑇𝐷𝐴𝑔,𝑐) − 𝑒𝑟𝑔,𝑐
+ (1 − 𝐸𝑖)

(1 + β𝑒̂ ⋅ 𝑇𝐷𝐴𝑔,𝑐) − 𝑒𝑟𝑔,𝑐

𝑒𝑟𝑔,𝑐
 

where Ei = 1 if respondent i is employed and 0 otherwise, erg,c is the 2018 employment rate of 

individuals in group g and country c, and βˆe · TDAg,c is the estimated employment effect of robot 

penetration. This provides counterfactual employment rates, assuming no change in robot 

penetration after 2006. Differences between inequality measures calculated using observed and 

simulated household incomes capture the distributive impact of automation through employment. 

We combine wage and employment simulations to obtain counterfactual income distributions 

reflecting the joint effect through wages and employment. Due to non-linearities, the joint effect can 

differ from the sum of wage and employment effects; we express this difference as an interaction 

effect. 

To assess the role of income pooling within the household (and therefore labor income source 

diversification) for the transmission of automation-driven shocks, we compare observed and 

simulated distributions of individual-level and household-level market incomes (for those aged 20-

65). 

Finally, to assess the cushioning role of tax-benefit systems, we compute Gini indices for market and 

disposable incomes, additionally distinguishing between incomes after transfers and those after 

taxes and transfers. The double differences between pre- and post-tax distributions, observed and 

simulated, capture how much taxes and benefits cushioned the impacts on disposable incomes. 

To be clear, this microsimulation analysis is a comparative-static exercise – it maps the automation-

induced shocks into disposable household income while holding household structures and tax-

benefit rules fixed. We evaluate the automation shock under both pre-shock (2006) and post-shock 

(2018) household structures and policy regimes, but differences between these scenarios reflect a 

combination of endogenous responses to automation and unrelated institutional and demographic 

changes. We therefore do not identify behavioural responses of households to automation, nor 

policy adjustments enacted in response to technological change. 

 
15 See Appendix C for more details on EUROMOD and the simulation methodology. 
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4 The effects of robot exposure on wages, employment, market income, and 

household structure 

OLS estimates of the effect of robot exposure on relative wage growth in Europe are statistically 

significant and negative (Table 2): demographic cells exposed to higher robot penetration 

experienced lower wage growth. However, as discussed in Section 3, OLS estimates may be biased 

if unobserved shocks affect both robot adoption and labor market outcomes simultaneously. 

Instrumental variable estimates address this concern and provide very similar results, albeit larger 

in absolute terms (Table 2).16  This could mean that OLS estimates may be biased towards zero, 

possibly because of omitted factors correlated negatively with changes in exposure to task-

displacing technologies.17 

Table 2. The effect of automation on changes in real hourly wages, 2006–2018 

 (1) (2) (3) (4) 
 OLS 

Automation: penetration of robots -0.055∗∗∗ -0.055∗∗∗ -0.035∗∗ -0.041∗∗∗ 
 (0.017) (0.017) (0.016) (0.015) 

 2SLS 
Automation: penetration of robots -0.093∗∗∗ -0.091∗∗∗ -0.057∗∗∗ -0.064∗∗∗ 

 (0.023) (0.022) (0.022) (0.021) 
Country FE yes yes yes yes 
Manufacturing share yes yes yes yes 
Gender no yes yes yes 
Education no no yes yes 
Industry shifters no no no yes 
F-statistic first stage 314.55 308.72 261.09 260.93 
Mean of outcome 0.26 0.26 0.26 0.26 
Mean of automation 0.83 0.83 0.83 0.83 
Observations 420 420 420 420 

Notes: The dependent variable is the change in log wages across 30 demographic groups in 14 
European countries from 2006 to 2018. The instrument is the average robot penetration in five 
European countries not included in the sample. All regressions are weighted by the group’s share of 
the country’s employment. Column 4 shows our baseline estimates. Robust standard errors are 
reported. The first stage F statistic is the statistic from the Kleibergen-Paap test. Appendix Table B.1 
shows the first-stage results. Data: EU-SES. * p<.10; ** p<.05; *** p<.01 

 
16 Appendix Table B.1 presents first-stage results. 
17  For instance, declining international competitiveness could incentivise robot investment and slow down 
wage growth. A similar pattern of IV estimates being larger in absolute terms than OLS estimates was found 
for European countries by Aksoy et al. (2021) and Albinowski and Lewandowski (2024). 
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Results are robust across specifications. Our preferred specification, reported in Column 4 of Table 

2, includes group-specific shifters (gender and education fixed effects, as well as exposure to 

manufacturing) and industry shifters capturing changes in sectoral value added. While the 

coefficient lacks a direct interpretation, scaling it by a standard deviation of robot penetration across 

demographic groups (0.59, Appendix Table A.2) implies that a one-standard-deviation increase in 

exposure reduced relative wage growth by about 4%. Notably, the direction and magnitude of the 

effect are virtually identical in Western and Eastern Europe (Appendix Table B.2). 

Results remain essentially unchanged when controlling for additional factors, such as specialization 

in routine jobs, exposure to offshoring, Chinese imports penetration, minimum wage, collective 

bargaining coverage, and population changes (Appendix Table B.3). Leave-one-out tests show that 

no single country drives the results (Appendix Figure B.2). We also obtain consistent findings using 

alternative instruments, using robot adoption (i) in the same set of countries as in Acemoglu and 

Restrepo (2022) and (ii) in the United States, although the latter estimates are less precise (Tables 

B.4 and B.5). In addition, robot penetration significantly compresses wage dispersion within 

demographic groups (Appendix Table B.6). This indicates that the disequalising, between-group 

effects constitute a key distributional channel of automation and validates our focus this channel.  

In most countries, automation-induced wage declines tend to concentrate in the lower half of the 

wage distribution. To highlight this, we used the estimated coefficients to calculate automation-

induced wage changes all demographic groups in 14 countries in our sample, and map them onto 

the initial within-country wage distribution. Figures 1-2 show these effects by percentiles of the wage 

distribution in particular countries, while Appendix Figure B.3 aggregates the results across 

countries. 

 Automation’s impact on wages varied greatly across Europe. The disequalising pattern is most 

pronounced in Belgium, the Czech Republic, Hungary, Germany, and Poland, where wage 

reductions for groups at the bottom exceed 5%, roughly double the size of those recorded at the top 

(Figures 1–2). These countries experienced rapid robot adoption between 2006 and 2018 (Appendix 

Figure B.1), with high exposure among below-median earners. By contrast, in the Baltic countries or 

the Netherlands, wage effects appear more evenly distributed.18  

  

 
18 In the pooled sample, wage changes due to automation for the bottom decile were twice as large as changes 
due to automation for the top decile (Appendix Figure B.3). However, this partly reflects the fact that Eastern 
countries had lower wages and recorded rather large increases in robot penetration. 



16 

Figure 1. Wage changes due to automation, by percentiles of country-specific initial (2006) wage 

distributions (i.) 

 (a) Belgium (b) Bulgaria 

 

 (c) Czech Republic   (d) Germany 

 

 (e) Estonia (f) France 

 

 (g) Hungary (h) Lithuania 

 

Notes: Wage changes due to automation are calculated by multiplying the group’s increase 
in exposure to automation by the wage effects of automation from the equation 3. Data: EU-
SES.  
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Figure 2. Wage changes due to automation, by percentiles of country-specific initial (2006) wage 

distributions (ii.) 

 (a) Latvia  (b) Netherlands 

 

 (c) Poland (d) Romania 

 

 (e) Sweden (f) Slovakia 

 

Notes: Wage changes due to automation are calculated by multiplying the group’s increase 
in exposure to automation by the wage effects of automation from the equation 3. Data: EU-
SES. 

  



18 

Automation also affected employment. We find a statistically significant decline in employment 

rates among more exposed groups (Table 3). It is, however, relatively small. According to IV 

estimates, a one-standard-deviation increase in robot penetration reduced employment rates by 

about two percentage points. Combined with adverse wage effects (Table 2), these findings suggest 

a negative impact of automation on labor market outcomes of more exposed groups.19 

Table 3. The effect of automation on changes in employment rates, 2006–2018 

 (1) (2) (3) (4) 
 OLS 

Automation: penetration of robots -0.011 -0.009 -0.023 -0.017 
 (0.012) (0.013) (0.019) (0.014) 
 2SLS 

Automation: penetration of robots 0.000 0.004 -0.033 -0.034* 

 (0.016) (0.018) (0.021) (0.021) 

Country FE yes yes yes yes 

Manufacturing share yes yes yes yes 
Gender no yes yes yes 
Education no no yes yes 
Industry shifters no no no yes 
F-statistic first stage 353.80 339.95 233.69 233.61 
Mean of outcome 0.04 0.04 0.04 0.04 
Mean of automation 0.83 0.83 0.83 0.83 
Observations 420 420 420 420 

Notes: The dependent variable is the change in employment rates across 30 demographic groups in 14 

European countries from 2006 to 2018. The instrument is the average robot penetration in five European 

countries not included in the sample. Robust standard errors are reported. The first stage F statistic is the 

statistic from the Kleibergen-Paap test. Data: EU-SES. * p<.10; ** p<.05; *** p<.01 

As discussed above, adverse impacts on wage and employment do not necessarily imply negative 

shocks to household incomes.  Table 4 shows reduced-form estimates of the impact of our cohort-

level robot exposure measures  on households’ incomes, distinguishing between market (the sum 

of income from dependent and self-employment) and total (monthly) income measures, using EU-

SILC data. 20  While the estimates are less precise than for wages and employment, we find a 

considerable reduction in individual monthly market income (column 1 of Table 4) that is consistent 

 
19  Our finding of statistically significant, negative effect of robot penetration on the change in hourly wage 
dispersion within demographic groups (Appendix Table B.6) suggests that the adverse employment effect does 
not drive the negative wage effect through compositional changes. This facilitates combining wage and 
employment effects in quantifying the distributional impacts of automation 
20 Unfortunately, due to low data quality, we had to exclude Bulgaria, Estonia, and Romania from this analysis. 
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with wage and employment impacts. At the same time, market income of other household members 

increased significantly (column 2 of Table 4), consistent with an added-worker response (Lundberg, 

1985). Combining these effects, market income per working-age household member and the 

average equivalized market income remained unaffected by robot exposure, resulting in no impact 

on disposable income (columns 3-5 of Table 4). While we observe a small positive effect of robot 

exposure on the number of working-age household members, we see no evidence of adjustments in 

household size (columns 5-6 of Table 4). Diversification of household market income and the 

positive response of other household members’ income appear sufficient to offset the reduction in 

labor income affecting workers exposed to automation. 

Table 4. The effect of automation on changes in monthly income and household structure, 2006-

2018 

 Market income Disposable 
income 

Household size 

 Individual 
(own) 

income 

Other 
members’ 

income 

Income per 
working-

age 
member 

Household 
equivalized 

income 

Household 
equivalized 

income 

Working-
age 

members 

Household 
size 

 (1) (2) (3) (4) (5) (6) (7) 

OLS 
Automation: 

penetration of 
robots 

-0.092∗ 0.062 0.027 -0.004 0.027 0.054∗∗∗ 0.015 
(0.048) (0.042) (0.034) (0.031) (0.019) (0.014) (0.011) 

2SLS 
Automation: 

penetration of 
robots 

-0.120∗ 0.099∗ 0.058 0.023 0.009 0.043∗ -0.003 
(0.071) (0.060) (0.046) (0.046) (0.022) (0.023) (0.013) 

Controls yes yes yes yes yes yes yes 
F-statistic 
first stage 

173.84 173.41 168.51 171.55 200.82 191.97 191.59 

Mean of 
outcome 

0.24 0.18 0.22 0.24 0.21 -0.04 -0.03 

Observations 330 330 330 330 330 330 330 
Notes: The dependent variables represent changes in log individual monthly market income, total monthly 
market income of other household members, market income per working-age member, equivalized household 
market income, equivalized household disposable income (after taxes and transfers), the number of working-
age household members, and household size for 30 demographic groups in 11 European countries from 2006 
to 2018. All regressions include controls for country, gender and education fixed effects, manufacturing share, 
and industry shifters. Due to data quality issues, Bulgaria, Estonia, and Romania were excluded from the 
analysis. The instrument is the average robot penetration in five European countries that were not included in 
the sample. In all regressions, we control for the initial level of the dependent variable, country fixed effects, 
manufacturing share of employment, gender, education level, and industry shifters. Robust standard errors 
are reported. Data: EU-SILC (EUROMOD). * p<.10; ** p<.05; *** p<.01. 
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5 The income inequality effect of robot exposure 

The transmission of automation-driven shocks to household income inequality reflects the 

interaction of three mechanisms: changes in wages and employment, income pooling within 

households, and redistribution through taxes and transfers. Section 4 provided evidence of 

automation’s adverse impact on wages, employment and individual incomes of exposed workers in 

Europe. However, wage declines tend to compress the income distribution, while employment 

losses increase the share of households with little or no market income, thereby raising inequality. 

Household structures further shape these outcomes, as assortative mating can amplify income 

shocks when multiple earners face similar exposure, while labor supply adjustments by other 

household members may offset them. Finally, progressive tax-benefit systems mitigate both effects.  

5.1 The contribution of automation to household income inequality 

Our regression results indicated that, on average across Europe, adverse labor market effects of 

automation tended to be cushioned by income diversification within households. Here, we assess 

the contribution of automation to household income inequality and identify the channels that 

amplify or mitigate individual-level shocks. We conduct this analysis at the country level to account 

for the cross-country differences in intra-household adjustment mechanisms and tax-benefit 

systems.  

We construct counterfactual wages and employment rates for 2018, assuming that robot exposure 

remained at the 2006 level. For each demographic group and country, we multiply robot penetration 

by the estimated wage and employment coefficients, as reported in columns 4 of Tables 2 and 3, 

respectively. We inject these values into the EUROMOD microsimulation model to generate 

counterfactual income distributions. 

We start by examining automation’s contribution to income inequality by country (Figure 3), 

distinguishing between the wage and employment channels and their interaction. To help relating 

impacts to tax-benefit systems, we group countries by welfare regime following Olivera (2018): 

Nordic (Sweden); Conservative (Belgium, France, Germany, and the Netherlands); Baltic (Estonia, 

Latvia, and Lithuania), and Post-Communist (Bulgaria, Czechia, Hungary, Poland, Slovakia, and 

Romania). Within each group, we order countries by the contribution of automation on income 

inequality. 

Automation-induced wage changes, which are negative across all demographic groups (Table 2), 

slightly reduced disposable household income inequality in most countries. Although automation 

widened wage inequality (Figures 1-2), lower wages compress the income distribution by reducing 

the income gap between workers and those out of work or on fixed incomes, such as pensions. This 
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equalizing mechanism is most pronounced in Nordic, Conservative, and some Post-Communist 

countries, but its magnitude remains small, around 1–2% of the 2018 Gini index in Czechia, Belgium, 

and Germany, and below 0.5% elsewhere (Figure 3).  

Automation-driven employment losses operated in the opposite direction. They increase the mass 

of individuals at the bottom of the market income distribution (with zero market income), modestly 

widening inequality in most countries. This channel partly or wholly offsets the wage effect. 

Countries with large robot penetration, such as Belgium, Slovakia, and Hungary, exhibit the largest 

employment-induced contribution to income inequality, reaching 1.2-1.5% of the 2018 Gini index. 

In other countries, the employment channel contributes less than 1% of the 2018 Gini index (Figure 

3). The interaction between wage and employment effects is negligible in all countries except France, 

suggesting that in France, employment losses disproportionately affect groups that also experience 

wage declines. 

Summing all components, we find that automation increased household income inequality only 

slightly in most countries, by less than 1.5% of the 2018 Gini index. Only in Czechia, the wage effect 

dominates and slightly reduces inequality (Figure 3). 

Figure 3. Contribution of automation to disposable household income inequality 

 

Notes: The Figure shows the terms of the decomposition of the change in household income inequality 

(automation-induced wage effect, automation-induced employment effect, their interaction and the 

total automation effect). In each group, countries are ordered in decreasing order of the total change 

in the Gini Index due to automation. Data: EUROMOD, EU-SILC. 
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As a robustness check, we simulate an upper-bound scenario in which all workers face the same 

robot exposure as workers in firms with at least 10 employees. For most countries, the results closely 

match the baseline results (Appendix Figure D.2). The upper-bound results are noticeably larger (in 

absolute terms) only in some Post-Communist countries with high robot adoption, such as Slovakia 

and Hungary, but they remain around 2% of the 2018 Gini index. 

5.2 The distributional impact of automation: households’ labor income 

diversification and tax-benefit systems 

Why has automation contributed so little to disposable income inequality in European countries? To 

assess the role of key mechanisms: the diversification of households’ labor income sources, and tax 

and benefit systems, we compare automation-induced changes in inequality across three income 

concepts: (i) individual-level market income of those aged 20–65 (earnings, plus investment income 

and private pensions, before taxes and transfers), (ii) equivalised household market income and (iii) 

equivalised household disposable income (after taxes and transfers). Comparing (i) to (ii) illustrates 

the role of pooling labor incomes within households in the transmission of the automation shock, 

while comparing (ii) to (iii) shows the cushioning effect of taxes and benefits. Figure 4 summarises 

the results. 

Automation consistently increases inequality in individual-level market income, reflecting wage 

dispersion and employment losses. The effect is largest in countries where automation 

disproportionately reduced wages at the bottom of the distribution, including Belgium, Slovakia, 

Czechia, and Germany, where individual-level Gini indices rise by up to 6%. In countries where 

automation barely affected low wages, such as Bulgaria, Latvia, and Estonia, the effect is close to 

zero. 

In all countries, automation widened inequality of individual-level market income, reflecting the 

disequalizing impact of robots on wages (Figures 1-2) and the accompanying fall in employment, 

which further polarises the distribution of market income. The impact is the largest (up to 6% of the 

2018 Gini index) in countries where automation disproportionately reduced wages at the bottom of 

the distribution, such as Belgium, Slovakia, Czechia, and Germany, widening wage inequality 

(Appendix Figure B.4). It is the weakest (close to zero) in countries where automation barely affected 

low wages and wage inequality, such as Bulgaria, Latvia, and Estonia. 

However, moving from individual to household market income highlights the key role of household 

structures in mitigating the impact of automation. In Nordic and Conservative countries, 

automation’s contribution to household market income inequality is visibly larger than its 

contribution to individual market income inequality, indicating that household income pooling 
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exacerbates the transmission of the automation shock. In the Post-Communist and Baltic countries, 

the difference is much smaller or negative, indicating a stronger diversification of market incomes 

within households. Appendix Figure B.5 shows that the magnitude of household labor income 

diversification by country is positively correlated with countries’ incidence of assortative mating in 

routine occupations. A sensitivity analysis (Appendix B) confirms that, in most countries, household 

formation in 2018 amplified the automation effect by less than household formation in 2006 would 

have (Appendix Figure B.6), in line with a decline in assortative mating in routine occupations that 

also happened in most countries. However, these changes in the contribution of household 

formation to automation are small, in absolute terms generally below 0.05% of the Gini coefficient 

(Appendix Figure B.6). 

Finally, tax and benefit systems play a vital role in cushioning the effects of automation on household 

disposable income. The contribution of automation to disposable household income inequality is 

much smaller than its contribution to either measure of market income (Figure 4), remaining below 

1% in most countries. However, in some Post-Communist countries (Slovakia and Hungary), the 

automatic stabilization by the tax-benefit system was unable to prevent a rise in household income 

inequality. 

Figure 4. The effect of automation on income inequality using various income concepts 

 

Notes: The Figure shows the change in Gini Index due to automation, where income is defined as (i) 
market income at the individual level, (ii) equivalised market income at the household level, and (iii) 
equivalised disposable income at the household level. In each group, countries are ordered in 
decreasing order of the total change in the Gini Index due to automation. Data: EUROMOD, EU-SILC. 
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Most of the cushioning effect of tax-benefit systems is due to benefits. To isolate the role of taxes and 

benefits, we examine Gini indices of household market income, gross income (market income plus 

benefits), and net income (market income minus income tax) . Benefits do much of the heavy lifting, 

particularly in the Nordic, Conservative and Post-Communist regimes, while taxes play a minor role 

(Figure 5).  Taking the example of Germany, automation increased the 2018 Gini index of individual-

level market income by 2.5% and of household market income by 3.7%. Taxes reduced inequality 

only marginally, by 0.2% of the Gini index, while benefits offset nearly the entire automation-driven 

increase in inequality, reducing the Gini index by 3.9% (Figure 5). Consequently, disposable income 

inequality remained essentially unchanged (Figure 3). In the Baltic countries, neither taxes nor 

benefits play a strong role, likely reflecting the small size of the automation shock.  

These findings align with the literature on the stabilizing effects of European tax-benefit systems. 

Dolls et al. (2022) reported that such effects for a stylized 5% shock to household market income 

range from 20% to 30% in some Eastern and Southern European countries to around 60% in 

Belgium, Germany, and Denmark. 

Figure 5. The cushioning effect of the tax-benefit system and household formation on automation 

induced inequality changes 

 

Notes: The Figure shows the effect of taxes, benefits and household risk-sharing on the change in the 
Gini Index due to automation. In each group, countries are ordered in decreasing order of the total 
change in the Gini Index due to automation. Data: EUROMOD, EU-SILC. 
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In most countries, the cushioning of the automation-induced shocks under the set of 2006 policies 

would have been very similar to that under the 2018 policies (see Appendix Figure B.7). In Romania, 

Slovakia, and Belgium, the 2006 systems would have cushioned the automation shock noticeably 

more than the 2018 systems, while the opposite pattern emerges only in Germany. In the remaining 

countries, the outcomes are virtually the same under both systems. This indicates that the stabilizing 

role of European tax-benefit systems has not been a direct policy response to automation but 

instead is a secular feature of European tax-benefit systems. 

5.3 Automation and overall income inequality trends in 2006–2018 

We conclude by comparing automation’s contribution to inequality with observed changes in 

income inequality between 2006 and 2018. Inequality evolved very differently across countries 

during this period, increasing sharply (by more than 10% of the Gini index) in Hungary, Bulgaria, 

Lithuania, and Sweden, and declining in Slovakia, Poland, and Estonia (Figure 6). Against these 

changes, automation has played a minor role. Its contribution ranges from -1.2% of the 2018 Gini 

index in Czechia to 1.5% in Slovakia. 

Across countries in our sample, automation explains only 1.2% of the cross-country variation in 

inequality changes (Table 5). The wage channel accounts for a larger share of automation’s 

contribution than the employment channel, while benefits emerge as the key mitigating force (Table 

5). 

Other economic shocks and policy changes, including the Great Recession and the sovereign debt 

crisis, played a much larger role than robot adoption in shaping the evolution of income inequality in 

European countries over this period. 

Table 5. Decomposition of channels behind and mechanisms cushioning the effect of automation 

on income inequality, in % of cross-country variance in the change in household income Gini index 

between 2006–2018 

Automation 
(total) 

Wage 
channel 

Employment 
channel 

Interaction 
Household 
formation 

Taxes Benefits 

1.2 1.6 -0.4 0.0 0.5 1.1 4.3 
Notes: The contribution of a variable x (variables of interest in the table), to the variance of outcome variable y 
(the change in household income Gini index between 2006–2018) calculated as in Morduch and Sicular 
(2002): σx = cov(x,y)/var(y). Data: EUROMOD, EU-SILC. 
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Figure 6. The change in household income Gini index between 2006–2018, and the contribution of 

automation 

 

Notes: The Figure shows the total change in the Gini Index between 2006 and 2018 and the 
automation-driven change in the Gini Index over the same period. Countries are ordered in decreasing 
order of the total change in the Gini Index. Data: EUROMOD, EU-SILC. 

6 Conclusion 

This paper examines how automation, measured by industrial robot penetration, affected wages, 

employment, and household income inequality in 14 European countries between 2006 and 2018. 

We combine causal estimates of automation’s impact on wages and employment at the 

demographic-group level with tax-benefit microsimulations to trace how labour market shocks 

translate into household disposable incomes. By focusing on demographic groups defined by 

gender, education, and age, and using an instrumental-variable strategy, we capture the contribution 

of automation-induced, between-group differences in wage growth and employment to inequality. 

We disentangle the role of adjustment mechanisms within households, related to household 

composition and income pooling, as well as the cushioning role of tax-benefit systems. 

Consistent with evidence from the United States, we find that higher robot exposure significantly 

reduced relative real wages, employment rates, and market incomes of more exposed groups. 

However, automation-induced declines of individual market income of exposed workers were partly 

offset by rising market incomes among other household members, consistently with an added-

worker effect (Lundberg, 1985). As a result, average market income per working-age household 

member, equivalised market income, and disposable income remained largely unaffected by robot 
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exposure. Household size remained unchanged, although the number of working-age household 

members increased slightly, reinforcing income diversification within households. 

The adverse labour market effects translated only weakly into household disposable income 

inequality. The key reason lies in the interaction of wage and employment shocks with household 

income pooling and redistribution. Automation-induced employment losses tended to increase 

inequality by expanding the mass of households with zero market income. In contrast, automation-

induced wage declines compressed the income distribution by narrowing gaps between those in 

work and those on fixed incomes. The ability of the welfare system to passively stabilize income 

distribution (Doorley et al., 2021) reduced the gaps between the incomes of those in and out of work 

and a corresponding fall in income inequality. In most countries, these opposing forces largely 

cancel each other out. 

Examining the transmission mechanisms in more detail, we observe that tax-benefit systems played 

a central role in cushioning automation-driven shocks, particularly in Nordic and Conservative 

welfare regimes. Benefits accounted for most of the stabilization, reflecting the employment-based 

nature of the automation shock, while taxation played a more limited role. Household labour income 

diversification did not, on average, mitigate automation’s impact on inequality. In several Nordic and 

Conservative countries, it even slightly amplified inequality. Evidence suggests that the mitigating 

force of household labour income diversification was negatively related to assortative mating in 

routine occupations, which increases the correlation of automation exposure among household 

members. Added-worker responses offset individual income losses, but not sufficiently to 

meaningfully affect inequality. 

Overall, while automation measurably affected wages and employment, its contribution to changes 

in household income inequality was relatively small compared to other forces shaping income 

distributions during this period, including the Great Recession, sovereign debt crises, austerity 

measures, and associated policy changes. Across countries, automation accounts for only a minor 

share of the observed changes in inequality between 2006 and 2018. 

Our results should be interpreted as first-order distributional effects. The simulations abstract from 

behavioural responses, changes in household formation, fertility, 21 or non-labour incomes induced 

by automation. We also focus on labour income channels and do not capture potential automation-

driven increases in capital income concentration, which remain poorly measured in household 

 
21 The evidence on robots’ impact on fertility is limited. Anelli et al. (2024) found no impact in the U.S., Matysiak 
et al. (2023) showed mixed effects in six European countries. 
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surveys.22 Despite recent efforts by statistical agencies to link survey data to administrative income 

information, capital incomes and top income earners remain underestimated and underrepresented 

in surveys such as EU-SILC (Bartels and Waldenström, 2021; Ravallion, 2022) and therefore cannot 

be included reliably in our analysis. Reassuringly, however, Carranza et al. (2023) showed that trends 

in income inequality over time, which are the focus of our paper, are not overly influenced by whether 

top-income households are accurately represented.  

Finally, operating at the demographic-group level implies that we do not capture within-group 

heterogeneity. However, we find that automation reduces labour incomes of more exposed groups 

but also appears to compress within-group wage dispersion (Appendix Table B.6). Therefore, our 

estimates of inequality capture the key disequalising force – the between-group income changes. 

From a policy perspective, our findings highlight that existing European tax-benefit systems have 

been effective at absorbing automation-driven labour market shocks, primarily through benefits 

rather than taxes. At the same time, household structures can amplify exposure when labour market 

risks are correlated within households. Future automation shocks may therefore place greater strain 

on redistribution mechanisms in countries with weaker automatic stabilizers or stronger assortative 

mating. Policies aimed at strengthening income stabilization during employment transitions, rather 

than broad labour market interventions, appear most relevant for limiting the distributional 

consequences of automation. 
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Appendix A. Data Appendix 

Table A.1. Variable descriptions 

Variable Description Source 

Socio-demographic characteristics 

Gender a binary variable (woman / man) EU-SES 

Education 

a categorical variable describing worker’s 
highest level of education completed, three 
categories: basic education (ISCED 0-2), 
secondary education (ISCED 3-4), and tertiary 
education (ISCED 5-8) 

EU-SES 

Age group 
a categorical variable describing worker’s age, five 
categories: 20-29, 30-39, 40-49, 50-59, 60 or more 

EU-SES 

Dependent Variables 

Change in real hourly 
wages 

difference in log hourly wages (2006-2018) EU-SES 

Change in employment 
rate 

difference in employment rate (2006-2018) EU-LFS 

Change in household 
size 

difference in the household size calculated using 
OECD equivalence scales (2006-2018) 

EU-LFS 

Change in individual 
(own) market income 

 difference in log individual market income (2006-
2018) 

EU-SILC 

Change in other 
members market 
income 

difference in log total market income of other 
household members (excluding the individual, 
2006-2018) 

EU-SILC 

Change in household 
market income 

difference in log equivalised household market 
income (20062018) 

EU-SILC 

Change in household 
disposable income 

Difference in log equivalised household disposable 
income (2006-2018) 

EU-SILC 

Group’s industry-level exposure 

Automation 
difference in the group’s exposure to robots (robots 
per 1,000 workers, 2006-2018) 

International 
Federation of 
Robotics- 

Industry shifters 
group’s exposure to change in log value added 
(2006-2018) 

Eurostat 

Routine tasks 
relative specialization of a group g in industry i’s 
routine jobs in 2006 

EU-SES 

Offshoring 
difference in the group’s exposure to offshoring 
measured as foreign value added in gross output 
(2006-2018) 

OECD TiVA 
Indicators 
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Chinese imports 
penetration 

difference in the group’s exposure to the 
Chinese import penetration following Acemoglu 
et al. (2016): change in import from China 
(2006-2018) divided by initial absorption 
(industry outputs plus industry imports minus 
industry exports) 

OECD TiVA 
Indicators 

Collective bargaining 
coverage 

exposure to collective bargaining coverage levels in 
2006 (national- or industry-level agreements) 

EU-SES 

State ownership 
exposure to firms controlled by the state in 2006 
(over 50% of shares owned by the public 
authorities or de-facto control) 

EU-SES 

Other variables 

Manufacturing share group’s wage share in manufacturing in 2006 EU-SES 

N.e.c. manufacturing 
share 

group’s wage share in manufacturing nowhere else 
classified (residual category) in 2006 

EU-SES 

Minimum wage bite 
the number of workers with wages in 2006 below 
the 2018 minimum wage level divided by the 
number of all workers 

EU-SES 

Population change change in log population of a group (2006-2018) Eurostat 
Employment rate 
change 

change in employment rate of a group (2006-2018) Eurostat 

Notes: Description of variables used in the analysis. 
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Table A.2. Descriptive statistics 

 
Observations Mean 

Standard 
Deviation 

Minimum Maximum 

Gender: woman 420 0.48 0.50 0.00 1.00 
Gender: man 420 0.52 0.50 0.00 1.00 
Basic education 420 0.15 0.36 0.00 1.00 
Secondary education 420 0.56 0.50 0.00 1.00 
Tertiary education 420 0.29 0.45 0.00 1.00 
Age: 20-29 420 0.19 0.39 0.00 1.00 
Age: 30-39 420 0.27 0.44 0.00 1.00 
Age: 40-49 420 0.28 0.45 0.00 1.00 
Age: 50-59 420 0.22 0.41 0.00 1.00 
Age: 60+ 420 0.05 0.21 0.00 1.00 
Log wage growth 420 0.26 0.30 -0.45 1.01 
Employment rate change 420 0.04 0.07 -0.21 0.26 
Automation: penetration of 
robots 

420 0.83 0.59 0.01 2.40 

Initial wages 420 1.59 0.98 -0.48 3.67 
Industry shifters 420 0.21 0.15 -0.12 0.72 
Offshoring 420 -0.00 0.01 -0.03 0.02 
Chinese imports penetration 420 0.02 0.02 -0.00 0.23 
Manufacturing share 420 0.27 0.13 0.02 0.72 
N.e.c. manufacturing share 420 0.04 0.02 0.00 0.21 
Routine tasks 420 1.00 0.40 0.11 3.22 
Log income growth 390 0.70 0.59 -0.14 2.30 
Employment rate change 420 0.04 0.07 -0.21 0.26 
Minimum wage bite 420 0.40 0.31 0.00 1.00 
Collective bargaining coverage 420 0.26 0.32 0.00 1.00 
State ownership 420 0.25 0.16 0.01 0.77 
Population change 420 -0.06 0.38 -2.10 1.14 

Notes: This table presents the following statistics for each variable: Number of Observations, 
Average Value, Standard Deviation, Maximum and Minimum Value. The sources and description of 
the variables can be found in Table A.1. 
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Appendix B.  Additional Results 

Table B.1. Automation and changes in real hourly wages - IV first stage results 

 (1) (2) (3) (4) 

 Automation: 

penetration of 

robots 

Automation: 

penetration of 

robots 

Automation: 

penetration of 

robots 

Automation: 

penetration of 

robots 

Instrument 0.377∗∗∗ 0.376∗∗∗ 0.425∗∗∗ 0.424∗∗∗ 

 (0.020) (0.020) (0.027) (0.027) 

Country FE yes yes yes yes 

Manufacturing share yes yes yes yes 

Gender no yes yes yes 

Education no no yes yes 

Industry shifters no no no yes 

F-statistic first stage 351.39 340.74 253.84 255.54 

Observations 420 420 420 420 

Notes: Table reports the first stage for our baseline IV estimation. The dependent variable is 
the change in log wages for each group from 2006 to 2018. In all regressions, we control for 
initial wage levels, manufacturing share of employment, manufacturing n.e.c. share of 
employment, gender, education, industry shifters and country fixed effects. All regressions 
are weighted by the share of the country’s employment. Robust standard errors are reported. 

Data: EU-SES. * p<.10; ** p<.05; *** p<.01 
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Table B.2. Automation and changes in real hourly wages - heterogeneity by region 

 2SLS 2SLS 

Automation: penetration of robots -0.064∗∗∗ -0.079∗∗∗ 

 (0.021) (0.027) 

Automation*Western Europe  0.025 

(0.058) 

Manufacturing share yes yes 

Gender yes yes 

Education yes yes 

Industry shifters yes yes 

F-statistic first stage 260.93 74.95 

Mean of outcome 0.26 0.26 

Mean of automation 0.83 0.83 

Observations 420 420 

Notes: Table shows the effects of penetration of robots on change in log wages. Column 1 shows the 
baseline results. In column 2, we add the interaction of the penetration variable with a dummy 
variable for Western Europe. The coefficient on the interaction shows the difference in the effects 
between Western and Eastern Europe. In column 1, we control for initial wage levels, manufacturing 
share of employment, manufacturing n.e.c. share of employment, gender, education, industry 
shifters and country fixed effects. In column 2, we additionally control for the interactions of all 
control variables with the region dummy. All regressions are weighted by the share of the country’s 
employment. Robust standard errors are reported. 

Data: EU-SES. * p<.10; ** p<.05; *** p<.01 
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Table B.3. Automation and changes in real hourly wages, with additional controls. 2SLS results 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Automation: 

penetration of 

robots 

-0.064∗∗∗ -0.067∗∗∗ -0.057∗∗∗ -0.083∗∗∗ -0.054∗∗∗ -0.065∗∗∗ -0.076∗∗∗ -0.078∗∗∗ -0.076∗∗∗ 

 (0.021) (0.024) (0.020) (0.021) (0.021) (0.021) (0.020) (0.021) (0.026) 

Country FE yes yes yes yes yes yes yes yes yes 

Manufacturing 

share 

yes yes yes yes yes yes yes yes yes 

Gender yes yes yes yes yes yes yes yes yes 

Education yes yes yes yes yes yes yes yes yes 

Industry shifters yes yes yes yes yes yes yes yes yes 

Routine tasks no yes no no no no no no yes 

Offshoring no no yes no no no no no no 

Chinese 

imports 

penetration 

no no no yes no no no no yes 

Minimum wage 

bite 

no no no no yes no no no yes 

Collective 

bargaining 

coverage 

no no no no no yes no no yes 

State ownership no no no no no no yes no yes 

Population 

change 

no no no no no no no yes yes 

F-statistic first 

stage 

260.93 165.41 269.57 247.26 254.06 265.02 273.17 257.70 167.01 

Observations 420 420 420 420 420 420 420 420 420 

Notes: Table shows estimates of the relationship between task displacement due to automation and the 
change in log wages across 30 demographic groups in 18 European countries. The dependent variable is the 
change in log wages for each group from 2006 to 2018. In all regressions, we control for initial wage levels, 
manufacturing share of employment, manufacturing n.e.c. share of employment, gender, education, industry 
shifters and country fixed effects. All regressions are weighted by the share of the country’s employment. 
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Column 1 shows our baseline estimates. In column 2, we additionally control for the relative specialization in 
routine tasks. In column 3, we additionally control for the increase in the exposure to offshoring. In column 4, 
we additionally control for the Chinese imports penetration. In column 5, we additionally control for minimum 
wage bite. In column 6, we additionally control for initial collective bargaining coverage. In column 7, we 
additionally control the initial employment share in state-controlled firms. In column 8, we additionally control 
for population change. In column 9, we control for all additional variables. The sources and description of the 
variables can be found in Table A.1. Robust standard errors are reported. 

Data: EU-SES. * p<.10; ** p<.05; *** p<.01 

 

 

Table B.4. Effects of automation on changes in real hourly wages and employment rates - original 

Acemoglu & Restrepo instrument, 2SLS 

 (1) (2) (3) (4) 

 Hourly wage Hourly wage Employment Employment 

Automation: penetration of robots -0.132∗∗ -0.078∗∗∗ 0.012 -0.029 

 (0.033) (0.030) (0.021) (0.028) 

Country FE yes yes yes yes 

Manufacturing share yes yes yes yes 

Gender no yes no yes 

Education no yes no yes 

Industry shifters no yes no yes 

F-statistic first stage 169.38 139.05 186.19 96.32 

Mean of outcome 0.26 0.26 0.04 0.04 

Mean of automation 0.83 0.83 0.83 0.83 

Observations 420 420 420 420 

Notes: Table shows estimates of the effects of the penetration of robots on changes in log wages and 
employment rates between 2006 and 2018. The alternative instrument is based on five countries selected by 
Acemoglu and Restrepo (2022): Denmark, Finland, France, Italy, and Sweden. All regressions are weighted by 
the group’s share of the country’s employment. Robust standard errors are reported. 

Data: EU-SES. * p<.10; ** p<.05; *** p<.01 
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Table B.5. Effects of automation on changes in real hourly wages and employment rates - US 

instrument, 2SLS 

 Hourly wage Hourly wage Employment Employment 

Automation: penetration of robots -0.060∗∗∗ -0.034 -0.006 -0.043∗∗ 

 (0.023) (0.021) (0.016) (0.020) 

Country FE yes yes yes yes 

Manufacturing share yes yes yes yes 

Gender no yes no yes 

Education no yes no yes 

Industry shifters no yes no yes 

F-statistic first stage 319.95 286.18 345.62 244.01 

Mean of outcome 0.26 0.26 0.04 0.04 

Mean of automation 0.83 0.83 0.83 0.83 

Observations 420 420 420 420 

Notes: Table shows estimates of the effects of the penetration of robots on changes in log wages and 
employment rates between 2006 and 2018. We instrument the industry-level adjusted penetration 
of robots by the adjusted penetration of robots in the United States. All regressions are weighted by 
the group’s share of the country’s employment. Robust standard errors are reported. 

Data: EU-SES. * p<.10; ** p<.05; *** p<.01 
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Table B.6. Automation and changes in wage dispersion within demographic groups, 2006-2018 

 (1) (2) (3) (4) 

 2SLS 

Automation: penetration of robots -0.171∗∗∗ -0.146∗∗∗ -0.118∗∗∗ -0.120∗∗∗ 

 (0.025) (0.023) (0.024) (0.024) 

Country FE yes yes yes yes 

Manufacturing share yes yes yes yes 

Gender no yes yes yes 

Education no no yes yes 

Industry shifters no no no yes 

F-statistic first stage 346.14 337.11 250.05 250.93 

Mean of outcome 0.04 0.04 0.04 0.04 

Mean of automation 0.83 0.83 0.83 0.83 

Observations 420 420 420 420 

Notes: Table shows estimates of the effects of the penetration of robots on changes in within 
demographic-group wage dispersion between 2006 and 2018. The dependent variable is the change 
in the coefficient of variation of wages from 2006 to 2018. All regressions are weighted by the group’s 
share of the country’s employment. Robust standard errors are reported. 

Data: EU-SES. * p<.10; ** p<.05; *** p<.01 
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Figure B.1. Adjusted penetration of robots in Europe (2006-2018) 

 

Notes: Figure shows the adjusted penetration of robots in European countries (the 2006-2018 
increase in the robots per worker adjusted for the industry-level growth of output). The red bars 
denote the countries included in our study. Data: IFR & Eurostat. 

 

Figure B.2. Automation and changes in real hourly wages, leave-one-out test 

 

Notes: Figure shows the point estimates and 95% confidence intervals of the effects of the 
penetration of robots on changes in log wages between 2006 and 2018. In each regression, we 
remove one country (displayed on the x-axis).  

0 

5 

10 

  
Sample Not in the Sample 



41 

Figure B.3. Wage changes due to automation, by percentiles of the initial (2006) pooled wage 

distribution 

 

Notes: Figures show the average wage changes due to automation for percentiles of the within-
country wage distribution. Wage changes due to automation are computed by multiplying the 
group’s increase in exposure to automation by the wage effects of automation from the equation 3. 
We compute the wage changes due to automation for each percentile of the 2006 wage distribution 
within each country and then calculate average wage changes across 14 countries in the sample. 
Results by country are shown in Figures 1-2. Data: EU-SES. 

Figure B.4. The contribution of automation to wage inequality (Gini index of hourly earnings) 

 

Notes: Figure shows the difference between the Gini index of hourly wages in 2018, and in a 
counterfactual scenario with no changes in automation between 2006-2018. Data: EU-SES.  
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Figure B.5. The contribution of household income diversification to automation-driven inequality vs. 

the incidence of occupational assortative mating among workers in routine occupations 

 

Notes: The incidence of assortative mating defined as a share of workers in routine occupations who 
form a household with a person who also works in a routine occupation, in all households that 
include at least one person working in a routine occupation. 

Data: EUROMOD, EU-SILC. 
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The cushioning effect of household formation: 2006 vs 2018 

Household formation changes over time. Notable trends in Europe over the last few decades include 

delayed marriage and childbirth, and the elderly living longer. In this sensitivity analysis, we compare 

the cushioning effect of household formation on the automation shock to its counterfactual value if 

household formation in 2018 followed the 2006 structure. In practical terms, this involves injecting 

the automation shock into the 2006 simulation of income inequality, calculating the difference 

between how individual level market income inequality changes and how household level market 

income inequality changes, and comparing this double difference to the same calculation 

performed on the 2018 simulation of income inequality, with and without the automation shock. 

Figure B.6 shows how household formation affects the transmission of the automation shock using 

the 2006 population structure and the 2018 population structure. The latter effect replicates that 

shown in Figure 5. For most countries, the cushioning effect of household formation on the 

automation shock is similar for the two population structures. Some exceptions in Western Europe 

include the Netherlands, Germany and France. In all cases, household formation in 2006 would have 

amplified the effect of automation on income inequality, compared to household formation in 2018. 

This indicates more household risk sharing in these countries in 2018 compared to 2006. In Eastern 

Europe, only Slovakia and Czechia display different cushioning effects in the two scenarios. Similar 

to the patterns for Western Europe, in both cases, household formation in 2018 performs more 

cushioning for the automation shock than household formation in 2006. 
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Figure B.6. The contribution of household formation to the automation-induced household 

inequality: 2006 vs 2018 

 

Notes: The figure shows the cushioning effect of household formation on the automation shock in 
2018 (similar to Figure 5) and a counterfactual cushioning effect if household formation followed the 
2006 structure. 

 

The cushioning effect of the tax-benefit system: 2006 vs 2018 

To investigate how the tax-benefit system interacts with automation-driven market income changes, 

we compare the automation effect shown in Figure 3 to a hypothetical scenario in which an indexed 

version of the 2006 tax-benefit system was in place in each country.23 

In essence, this shows how discretionary changes to tax and welfare payments between 2006 and 

2018 affected the transmission of automation-induced labor income changes into disposable 

income inequality. The hypothetical effect of automation on income inequality if an indexed 2006 

tax-benefit system was in place in 2018 is shown in Figure B.7. 

In most countries, the transmission of the automation-induced market income changes is very 

similar under the set of 2006 policies. So, for most countries in the sample, the 2018 tax-benefit 

 
23 This is accomplished by applying the 2006 tax-benefit system to the 2018 population where incomes are 
deflated by HICP. 
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system does not interact with automation changes differently to a price-indexed 2006 system. Two 

exceptions to this are Romania and Slovakia. In both countries, the 2006 tax-benefit system would 

have cushioned the automation driven inequality changes by substantially more than the 2018 

system. 

Figure B.7. Effect of automation on inequality in disposable household income: 2006 vs 2018 tax 

and benefit policies 

 

Notes: The figure shows the simulated effect of automation on income inequality under (i) the 2018 
tax-benefit system and (ii) if an indexed 2006 tax-benefit system was in place in 2018. Countries are 
ordered, within Eastern and Western Europe, in decreasing order of the total change in the Gini Index 
due to automation. Data: EUROMOD, EU-SILC.  
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Appendix C. Details on the microsimulation of wage and employment shocks 

To assess the impact of wage and employment changes on the evolution of income inequality 

between 2006 and 2018, we build on the framework outlined by Bargain and Callan (2010). 

First, denote Y := (X,Y L,Z) a N × k matrix with, for each of N households, k − 2 sociodemographic 

characteristics (X, including gender, education and age of all household members), labour income 

(Y L), and other market incomes (Z). Let d(·,p) denote a ‘tax-benefit function’ which calculates 

household disposable income on the basis of household characteristics, pre-tax incomes, and a set 

of tax-benefit policy rules and parameters. p denotes nominal values of monetary tax-benefit 

parameters (e.g., tax brackets, benefit amounts, eligibility thresholds, etc.). So, yd = d(Y,p) is a N × 1 

vector of final disposable incomes implied by the tax-benefit system for a population with market 

incomes and characteristics given by Y. Income inequality in disposable income is denoted I [yd] 

where I : RN 7→ [0,1] is a summary inequality index such as the Gini coefficient. 

Here, the function d is the EUROMOD tax-benefit calculator. EUROMOD is a static tax-benefit 

calculator for the EU countries, which allows for a comparative analysis of tax-benefit systems 

through a common framework (Sutherland and Figari, 2013). With information about socio-

demographic and labour market characteristics as well as market incomes (earnings, but also 

capital income) of all household members, EUROMOD simulates disposable income for 

households by applying (existing or counterfactual) tax-benefit rules. Input data from EUROMOD is 

obtained from EU-SILC and the vector of N household observations is therefore representative of the 

populations of all European Union countries. EUROMOD is maintained, developed and managed by 

the Joint Research Centre (JRC) of the European Commission, in collaboration with Eurostat and 

national teams from the EU countries. It is documented and validated on an annual basis by this 

consortium. 

Introducing subscripts for time, we write inequality in year t as I [dt((Xt,Yt
L,Zt),pt)]. The total change in 

a given distributional index between two time periods, t = 0 (2006) and t = 1 (2018), can then be 

written as 

(5)  

We use this formulation to assess the (marginal) change in the Gini coefficient induced by 

automation-induced employment changes and automation-induced wage changes. The 

automation-induced employment change effect is obtained by constructing 
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where X˜
1 is the period 1 data reweighted such that employment probabilities by socio-demographic 

groups (by education, gender and age cells) map the employment probabilities that would have been 

expected in 2018 in the absence of automation effects. The automation-induced wage effect is 

obtained as 

 

where Y˜ L1 is period 1 wages of employed individuals scaled down by the automation-induced 

predicted wage growth by socio-demographic group between period 0 and 1 

(6)  

where dw(X0) is the vector automation-induced relative change in wage for the year 0 population (X0 

includes gender, education, age characteristics). The contribution of the combination between wage 

and employment is obtained by combining counterfactuals: 

. 

The three terms ∆AE, ∆AW and ∆AWE capture the effect of automation that we are primarily interested in 

(holding everything else constant in the base year 1—other incomes, individual characteristics, and 

tax-benefit policies). The estimates of the terms can be interpreted as the marginal change in the 

Gini coefficient that we would observe relative to 2018 if we apply a ‘time-machine’ that undoes the 

effect of automation-induced employment and/or wage change since 2006. 

As explained in the main text, to adjust wages, we first divide the hourly wages of all employed 

workers in the 2018 EU-SILC by (1 + βˆw · TDAg,c) according to their demographic group g and country 

c. Such deflated wages reflect counterfactual wages in 2018 the absence of increased robot 

penetration since 2006. We then recalculate household incomes by aggregating deflated wages into 

annual labour incomes for all household members, adding non-labour incomes and imputing social 

transfers, taxes and social security contributions calculated from the 2018 tax-benefit calculator 

EUROMOD. 

To inject changes in employment into 2018 EU-SILC, we ‘reweight’ each respondent by a factor 
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where Ei = 1 if respondent i is employed and 0 otherwise, pg,c is the 2018 employment rate of 

individuals in group g and country c, and βˆe · TDAg,c is the estimated employment effect of robot 

penetration. Accordingly, the reweighted 2018 EU-SILC samples have employment rates by group 

and country that reflect what would have been observed in the absence of employment effects from 

robot penetration.  
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Appendix D. Accounting for incomplete coverage of employment in small firms 

The EU-SES data we use to estimate the effects of robot penetration cover only firms with at least 10 

workers. The employment share of workers employed in firms with fewer than 10 workers or self-

employed varies substantially across demographic groups in our sample. Still, it is substantial in 

some of them (see Figure D.1). 

Figure D.1. The share of workers in firms with fewer than 10 workers, or self-employed, across 

demographic groups (% of groups’ total employment) 

 

Data: EU-LFS. 

As automation technologies such as robots are generally used in larger firms, workers in the EU-SES 

sample are likely more exposed to robots than workers in smaller firms. As a consequence, 

automation’s impact on workers in firms with at least 10 workers may be larger than the effects on 

all workers. Hence, for each demographic cell, we multiplied the counterfactuals by the share of 

workers in firms with at least 10 workers. 

As a robustness check, we also simulated household incomes assuming that in each demographic 

group, all workers were affected by robots in the same way as workers in the EU-SES sample. This 

provides an upper-bound calculation of automation’s contribution to household inequality. 
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For most countries, the baseline and upper-bound results are very similar (Figure D.2). The upper-

bound results are noticeably larger (in absolute terms) than the baseline results only in Eastern 

European countries with the largest contribution of automation to income inequality, such as 

Slovakia and Hungary. Still, the upper-bound contribution in these countries is around 2% of the 

2018 Gini coefficient. 

Figure D.2. The contribution of automation to income inequality – baseline results vs. upper-bound 

results 

 

Notes: baseline results - for each demographic group, we weighted the counterfactual that isolates 
labour market effects of robot penetration in 2006-2018 by the employment share of firms with at 
least 10 workers. Upper-bound results - for each demographic group we assume that all workers are 
affected by robot penetration in the same way as those in firms with at least 10 workers. Data: EU-
LFS. 


	1 Literature and contribution
	2 Data and Measurement
	2.1 Data sources
	2.2 Robot penetration and automation-induced task displacement
	2.3 Descriptive statistics

	3 Empirical Strategy
	3.1 Effects of automation on labour market outcomes
	3.2 Microsimulation of disposable income inequality

	4 The effects of robot exposure on wages, employment, market income, and household structure
	5 The income inequality effect of robot exposure
	5.1 The contribution of automation to household income inequality
	5.2 The distributional impact of automation: households’ labor income diversification and tax-benefit systems
	5.3 Automation and overall income inequality trends in 2006–2018

	6 Conclusion
	References
	Appendix A. Data Appendix
	Appendix B.  Additional Results
	Appendix C. Details on the microsimulation of wage and employment shocks
	Appendix D. Accounting for incomplete coverage of employment in small firms

