
1 

 

A u t o m a t i o n ,  T r a d e  U n i o n s  a n d  A t y p i c a l  
E m p l o y m e n t • 
 

Piotr Lewandowski 

Wojciech Szymczak 

 

Accepted in Industrial Relations: A Journal of Economy and Society 

 

Abstract 
We study the effect of automation technologies – industrial robots, software and databases – on the incidence 
of involuntary atypical employment in 13 EU countries between 2006 and 2018. Robots do not affect total 
employment rate but significantly increase the involuntary atypical employment share, mainly through fixed-
term work. Software and databases increase total employment and are neutral for atypical employment. Higher 
trade union density mitigates the robots’ impact on atypical employment, while employment protection 
legislation plays no role. Using historical decompositions, we attribute 1-2 percentage points of the 15% average 
atypical employment share in our sample to automation. 
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1. Introduction 
The ongoing technological transformation, characterised by the rapid diffusion of automation and digital 
technologies, profoundly reshapes labour markets and the nature of work. While technological progress has 
historically been associated with productivity gains and economic growth, the current wave of automation and 
digitisation raises concerns about its consequences for employment, job stability and quality (Acemoglu & 
Restrepo, 2019; Autor, 2015). Evidence suggests that the aggregate labour market effects of automation are 
more benign in European countries (Bachmann et al., 2024; Battisti et al., 2023; Dauth et al., 2021; Gregory et 
al., 2022) and Japan (Adachi et al., 2024; Deng et al., 2023) than in the United States (Acemoglu & Restrepo, 
2020, 2022; Di Giacomo & Lerch, 2025). Yet, automation continues to create winners and losers across sectors 
and skill groups. 

Automation affects not only the quantity of jobs but also their quality. Workers displaced from routine-intensive 
occupations often experience occupational downgrading (Autor & Dorn, 2013; Cortes et al., 2020; Goos & 
Manning, 2007), increased insecurity (Yam et al., 2023), and deteriorating well-being (Nikolova et al., 2024). 
Those who remain employed can suffer from wage losses (Acemoglu & Restrepo, 2022) and increased work 
intensity (Antón et al., 2023). As automation may reduce workers’ bargaining power and increase firms’ demand 
for flexibility, the rise of atypical employment—involuntary temporary, part-time, or underemployed work—has 
become a key concern (Doorn & Vliet, 2022). Unlike previous technological waves, this shift coincides with a 
sustained increase in non-standard employment across high-income countries (ILO, 2016; OECD, 2015).1 
Understanding how automation influences both the incidence and quality of employment has thus become 
central to the debate on the future of work. An important question is whether automation technologies have 
contributed to the rise of involuntary atypical employment forms. As these forms tend to reduce workers’ health, 
productivity, and well-being, evaluating automation’s impact on their incidence is essential for understanding 
the multidimensional consequences of automation.2 

Conceptually, different automation technologies can affect employment and job quality through distinct 
mechanisms. Industrial robots are labour-saving technologies that substitute for workers in routine manual 
tasks (Acemoglu & Restrepo, 2020; Bessen et al., 2025; Dauth et al., 2021). Robots rarely augment labour 
(Acemoglu & Restrepo, 2019), although they may have overall positive employment effects if the productivity 
gains they bring expand markets (Graetz & Michaels, 2018; Gregory et al., 2022). When firms adopt robots, they 
may seek additional flexibility by expanding short-term or contingent work arrangements to adjust labour inputs 
more easily (Fornino & Manera, 2022). Workers affected by automation, especially those engaged in routine 
tasks, may be hired temporarily to meet the demand volatility in production, and laid off immediately afterwards 
(Abraham & Taylor, 1996; Bentolila & Saint-Paul, 1994). As a result, robots may have neutral effects on total 
employment but negative effects on job quality, reflected in higher shares of atypical employment. Software 
and other information and communication technologies (ICT), however, are more often labour-augmenting: they 
reduce communication and information processing costs (Calvino & Virgillito, 2018), enhancing productivity in 

 
1 We use the terms non-standard employment and atypical employment interchangeably.  
2 Workers in non-standard jobs are more exposed to stress originating from uncertainty concerning employment and 
income stability (Bender & Theodossiou, 2018). It may particularly affect workers in low-skilled occupations who face a 
higher risk of displacement and have lower bargaining power. 
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non-routine cognitive and analytical tasks and complementing human skills (Albinowski & Lewandowski, 2024; 
Almeida et al., 2020; Autor et al., 2003). They may, therefore, increase employment while leaving job quality 
unaffected (Menon et al., 2020). 

Labour market institutions can mediate these dynamics. Trade unions can counteract the erosion of workers’ 
bargaining power by constraining employers’ use of precarious contracts, supporting retraining, and 
redistributing productivity gains (Bryson et al., 2013; Devicienti et al., 2018), improving the outcomes of workers 
with precarious contracts (Litwin & Shay, 2022; Svarstad, 2024). Additionally, they narrow the gaps between 
routine and non-routine workers (Kostøl & Svarstad, 2023). Higher union density, therefore, can potentially 
improve protection of those most vulnerable to automation and mitigate the adverse effects of robots on job 
quantity and quality. In contrast, stringent employment protection legislation (EPL), while designed to safeguard 
workers from dismissal, may unintentionally exacerbate dualism by pushing adjustment pressures onto 
temporary or non-standard workers (Boeri & Garibaldi, 2007). Moreover, a more stringent EPL may discourage 
layoffs by making them more costly for firms, but its influence on working conditions may be less direct than 
that of collective bargaining. Thus, institutional capacity—especially collective bargaining— may shape the 
multifaceted consequences of automation on the labour market. 

Against this conceptual backdrop, this paper studies how automation technologies—specifically industrial 
robots and software and databases—affect the incidence of involuntary atypical employment in 13 European 
Union countries between 2006 and 2018.3 We define involuntary atypical employment as the sum of involuntary 
fixed-term, involuntary part-time, and underemployment forms, drawing on the European Union Labour Force 
Survey (EU-LFS) microdata. We link these labour outcomes to sectoral measures of technology adoption from 
the International Federation of Robotics (IFR, 2021) and EU KLEMS, following the task displacement framework 
of (Acemoglu & Restrepo, 2022). We use instrumental variables based on sectoral technological frontiers to 
address potential endogeneity in technology adoption. We use variation across demographic groups within 
countries for identification (Acemoglu & Restrepo, 2022; Doorley et al., 2023). We categorise workers into 30 
demographic groups in each country, defined by age, gender, and education level. We regress changes in 
involuntary atypical employment share across demographic groups against changes in their exposure to task 
displacement due to automation technologies. This exposure is adjusted based on each group’s sectoral and 
occupational employment structures, including their specialisation in routine jobs that are more vulnerable to 
automation. Essentially, our instrument assesses the exposure of demographic groups to automation 
technologies as if the industries they concentrate in followed the technological frontier. 

Our results show that industrial robots increase the share of involuntary atypical employment, mainly through 
fixed-term contracts, while having no significant effect on the total employment rate. In line with our conceptual 
framework, the main channel is involuntary fixed-term employment, which firms tend to use to increase the 
flexibility of hiring. The higher incidence of atypical employment may also reflect a higher labour churn, as 

 
3 Belgium, the Czech Republic, Germany, Estonia, France, Greece, Hungary, Italy, Lithuania, the Netherlands, Romania, 
Spain, and Sweden. The country coverage reflects data availability which we discuss in detail in section 2. 
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temporary contracts may reduce unemployment spells at the cost of lower job stability and quality (Berton & 
Garibaldi, 2012; Booth et al., 2002).4 

In contrast, software and databases have positive effects on total employment and neutral effects on the 
atypical employment share. Moreover, higher trade union density substantially mitigates the impact of robots 
on atypical work, whereas employment protection legislation has no moderating effect. These findings suggest 
that the institutional context—particularly collective bargaining—plays a crucial role in shaping how automation 
affects job quality. Our results are stable across different model specifications and robust to changing the 
construction of the instrumental variable.  

Evaluating the economic significance of automation as a driver of changes in involuntary atypical employment 
with a counterfactual analysis, we find that its overall contribution was noticeable in some European countries. 
It amounted to a 1-2 percentage point increase in involuntary atypical employment in countries with the largest 
technology adoption between 2006 and 2018, namely Central and Eastern European countries, Greece, and the 
Netherlands. However, it was slightly negative in Germany, Sweden, and Belgium. Without trade unions, the 
automation-driven increase of the involuntary atypical employment share would have been even larger in the 
Czech Republic and the Netherlands. In countries with negative contributions, it was primarily due to a strong 
moderating role of high trade union density. 

This paper contributes to three strands of literature. First, it expands research on automation by focusing on 
involuntary atypical employment, a dimension of job quality often overlooked in studies of automation’s 
aggregate employment and wage effects. Damiani et al. (2023) argued that robots may increase the risk of 
temporary jobs in industries with low knowledge accumulation. However, they only covered six European 
countries. This paper covers a larger group of countries, studies robots and digital technologies (software and 
databases), and comprehensively defines atypical employment. It also complements existing evidence that 
robots can reduce job quality, as indicated by increased work intensity (Antón et al., 2023) and diminished work 
meaningfulness and autonomy (Nikolova et al., 2024). 

Second, we provide evidence that trade unions can play a crucial role in mitigating automation's adverse labour 
market effects. The literature has long argued that labour market institutions may shape cross-country 
differences in automation’s impact (Dauth et al., 2021), and collective bargaining was associated with a lower 
impact of industrial robots on unemployment (Leibrecht et al., 2023). However, causal empirical studies remain 
scarce. This paper shows that trade unions may be key in mitigating automation-driven increase in involuntary 
atypical employment. At the same time, we find no such effects for employment protection legislation, opposing 
theoretical arguments that increasing labour protection (decreasing hiring flexibility) would increase workers’ 
comparative advantage compared to automation (Fornino & Manera, 2022).  

Third, we contribute to the literature on factors behind atypical employment growth in Europe. Traditionally, 
productivity slowdowns (Wasmer, 1999) and asymmetric employment protection reforms conducive to dual 

 
4 Although non-standard employment is better for workers than unemployment (Borowczyk-Martins & Lalé, 2018), a high 
presence of atypical contracts harms workers' careers, job quality, and equality (OECD, 2015). Answering if involuntary 
fixed-term jobs and other forms of atypical employment constitute a bridge between unemployment and full employment 
is beyond the scope of this paper. The evidence from meta-studies of literature is mixed, but it suggests that they are more 
often dead ends if unemployment is higher and when forms of contracts are more precarious (Filomena & Picchio, 2022). 
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labour markets (Boeri & Garibaldi, 2007; Dolado et al., 2002) have been cited as drivers of non-standard 
employment, especially fixed-term employment. As atypical employment has grown also in countries that did 
not implement such reforms (Katz and Krueger, 2019; OECD, 2015), globalisation and technological progress 
have come to the fore as factors undermining workers’ bargaining power and working conditions (Autor, 2015; 
OECD, 2019). However, the empirical literature on technological progress and non-standard employment has 
been mostly correlational and descriptive. Kahn (2018) argued that high employment protection could fuel 
labour market polarisation as firms may use temporary workers primarily for manual and routine tasks that are 
automatable. Doorn and Vliet (2022) showed that middle-skilled workers tend to accept poorer working 
conditions as they lose a comparative advantage in polarising labour markets. However, they did not quantify 
the role of technology directly. We show that automation has contributed to the rising incidence of precarious 
jobs in Europe, although it explains a minor share of atypical employment growth. 

The remainder of the paper is structured as follows. Section 2 describes the data and methodology. Section 3 
presents results, and Section 4 covers robustness checks. Section 6 concludes and provides policy 
recommendations. 

2. Data and methodology  
2.1. Atypical employment definition 

Several definitions of atypical employment exist, and most capture job precariousness (Broughton et al., 2016). 
Many studies have focused on the involuntary forms of atypical employment (Damiani et al., 2023; Doorn & 
Vliet, 2022; Hyytinen & Rouvinen, 2008), which, by definition, stem from factors other than workers’ preferences. 
This distinction is important as, for instance, part-time employment can reflect individual preferences for 
balancing care responsibilities with work duties, but it may also result from the inability to find a full-time job 
(Haines et al., 2018). We focus on the latter. As an undesirable situation, often related to material hardship and 
uncertainty about future labour outcomes, involuntary atypical employment is inherently depriving (Inanc, 
2018). Such manifestations of precarious employment as underemployment, involuntary part-time, and 
involuntary fixed-term work correlate with distress (Allan et al., 2022). While studying the relationship between 
involuntary atypical employment and deprivation or job quality is beyond the scope of this paper, there is 
evidence that involuntary forms of atypical employment systematically exhibit a higher risk of precariousness 
and deprivation than full-time, open-ended contracts (Broughton et al., 2016). 

We assume that technological displacement can influence the incidence of involuntary atypical employment. 
We acknowledge that technology adoption may also impact preferences and voluntary forms of non-standard 
employment. However, we focus on involuntary atypical employment, which can be more clearly interpreted in 
terms of precariousness and deprivation. 

We use the EU-LFS for 2006 and 2018, the main cross-country survey in the EU that provides data on 
employment outcomes, to define involuntary forms of atypical employment. We single out (i) involuntary-part-
time employment – individuals who work less than 30 hours5 per week and state they wanted to work full-time 

 
5 The EU-LFS distinguishes between usual and actual hours worked. To define the part-time workers, we refer to the usual 
hours which express the standard schedule of individuals’ working hours. However, for individuals, whose working hours 
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but could not find such a job; (ii) involuntary fixed-term employment – workers on fixed-term contracts who 
want an open-ended contract; and (iii) underemployment – workers who wish to work more hours than they 
currently do. To define the outcome, we used the usual reported weekly hours worked. We classify a worker as 
having an involuntary atypical job if the individual worked in any of these atypical forms. The EU-LFS 
distinguishes such workers from those who work part-time or on a temporary contract because they wish to. 
However, it does not single out some atypical forms that are likely involuntary and precarious, such as bogus / 
spurious self-employment and the so-called zero-hour contracts.  

The EU-LFS is a repeated cross-sectional dataset that does not allow studying worker transitions between 
standard and atypical employment. Therefore, in line with the literature on labour market effects of automation 
(Acemoglu & Restrepo, 2020; Dauth et al., 2021; Graetz & Michaels, 2018), we focus on long differences – 
changes in the share of atypical contracts in employment between 2006 and 2018 – that reflect cumulative, 
long-term impacts of technology adoption. Following Acemoglu and Restrepo (2022) we use the ‘demographic 
group’ framework and calculate the relative changes in atypical employment shares by countries and groups 
defined by education (low – levels 0-2 of the International Standard Classification of Education, ISCED; middle 
– levels 3-4 of ISCED; and high – level 5 of ISCED), age group (20-29, 30-39, 40-49, 50-59, 60+) and gender (men 
and women).6 Therefore, the identifying variation results from differences in atypical employment share 
changes within demographic groups, which drive the overall change in atypical employment – according to the 
standard shift-share decomposition, within-group effects contribute 95% of total changes in atypical 
employment shares in our sample. 

2.2. The measurement of technological displacement  

We study two key automation technologies that can substitute for human work: industrial robots and 
information and communication technologies (ICT), specifically software and databases. Robots have been 
found to deteriorate labour market outcomes, at least for some socio-economic groups, in the US and European 
countries (Acemoglu & Restrepo, 2020; Albinowski & Lewandowski, 2024; Antón et al., 2023; Dauth et al., 2021; 
de Vries et al., 2020). ICT, including software, has driven labour market polarization (Almeida et al., 2020; Blanas, 
2024; Cnossen, 2025; Jerbashian, 2019). Since Autor et al. (2003), it is common to assume that both these types 
of technologies tend to be routine-replacing: they substitute people in performing routine tasks but may 
complement workers performing non-routine tasks. This conceptual framework informs the construction of our 
exposure variables. 

 
vary, we use actual hours, as no information on usual hours is available. Moreover, some workers with positive usual hours 
declare zero actual hours, probably because of the survey taking place during holidays or paid leaves. 
6 Using variation between local labour markets (Acemoglu & Restrepo, 2020; Anelli et al., 2021; Antón et al., 2023; Dauth et 
al., 2021), sectors (Aksoy et al., 2021; Albinowski & Lewandowski, 2024; de Vries et al., 2020; Graetz & Michaels, 2018) or 
occupations (Bachmann et al., 2024) are alternative, common approaches to identifying labour market effects of 
technology adoption. However, using the variation between demographic groups allows capturing effects resulting from 
both technology-driven changes between sectors and occupations as well as within them. It also alleviates the issue of 
worker selection that affects estimates within occupations or industries (Böhm et al., 2022). The local labour market 
approach has similar advantages, but the regional information in the EU-LFS is too crude to allow precise identification of 
local labour markets.  
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We construct the measure of technology adoption on the country-industry level. Following Acemoglu & 
Restrepo (2020), for each industry i in country c, we define the adjusted penetration by automation technology 
(industrial robots, software and databases), Techi,c, as: 

AP_Techi,c =  
Mi,c,2018 −  Mi,c,2006

Li,c,2006
− 

Yi,c,2018 −  Yi,c,2006

Yi,c,2006
∗ 

Mi,c,2006

Li,c,2006
 (1) 

where: 

• Mi,c,t – represents the given technology stock (industrial robots, software and databases) in industry i 
in country c in year t; 

•  Li,c,t – represents employment in the industry i in country c in year t; 
• Yi,c,t – represents the total output of industry i in country c in year t.  

 

This adjusted penetration measure incorporates changes in the sectors’ gross output, so adjusted technology 
penetration is positive if the increase in the technology stock is larger than the increase in the industry’s size. 
This adjustment is essential in our cross-country sample that includes countries with varying growth rates. 

We use the International Federation of Robotics (IFR, 2021) data on the operational stock of industrial robots7 
and EU KLEMS data on net capital stock in software and database technology.8 

We aggregate the adjusted technology penetration to transform the variable from industry to demographic 
group level. Because of the skewed distribution of technology adoption across sectors, researchers commonly 
take a (natural) logarithm of technology variables (Acemoglu & Restrepo, 2022). However, the adjusted 
penetration measure takes non-positive values when the increase in a given technology stock (or value) is below 
the output growth in that industry.9 Therefore, we use the inverse hyperbolic sine transformation (IHS) which 
offers an alternative to a natural logarithm as it works similarly with large values but also applies to non-positive 
ones (Norton, 2022). The drawback of the IHS transformation is that coefficients cannot be interpreted as either 
elastic or semi-elasticities.  

Next, for each demographic group, g, and country, c, we calculate the task displacement measure (TDA) for each 
technology as a weighted exposure of the demographic group to a given technology, namely:  

TDAg,c =  ∑ 𝜔𝑔,𝑐
𝑖

𝑖 ∈𝐼

∗ 
𝜔𝑔,𝑖,𝑐

𝑅

𝜔𝑖,𝑐
𝑅  IHS(AP_Tech)i,c (2)  

 
7 According to the International Organization for Standardization (ISO 8373:201), an industrial robot is an “automatically 
controlled, reprogrammable, multipurpose manipulator, programmable in three or more axes, which can be either fixed in 
place or mobile for use in industrial automation applications”. 
8 We use the variables presented in national currencies in 2015 chained prices. Using the Eurostat data on 2015 average 
annual exchange rates, we re-calculate the capital and output data to Euro.  
9 For example, manufacturing of textiles, wearing apparel, leather and related products in France (Industrial Robots), Arts, 
entertainment, recreation and other service activities in Spain (Software & Databases).  
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where: 

• 𝜔𝑔,𝑐
𝑖  - refers to the share of demographic group g employed in sector i in country c; 

•  
𝜔𝑔,𝑖,𝑐

𝑅

𝜔𝑖,𝑐
𝑅  – represents the relative share of routine workers of the g demographic group in industry i among 

all routine workers in industry i in country c.  

To calculate routine employment shares, we assign 2-digit occupations (according to the International Standard 
of Occupations, ISCO) into occupational task groups, using the allocation developed by Lewandowski et al. 
(2020). Following Doorley et al. (2023), we use the EU Structure of Earnings Survey (EU-SES) to calculate 
detailed sectoral employment structures of demographic groups, 𝜔𝑔,𝑐

𝑖 .10 Thus, the variation of task 
displacement variable across demographic groups reflects differences in industrial employment structures and 
specialisation in routine occupations within industries. 

2.3. Measures of labour market institutions 

Institutional factors can shape the labour market effects of macroeconomic factors and shocks (Blanchard & 
Wolfers, 2000). In the context of technology adoption and atypical employment, we are particularly interested 
in the potential role of trade unions. Therefore, we aggregate the 2006, 2008 and 201011 waves of the European 
Social Survey (ESS) to the demographic group level and calculate trade union density, namely the shares of 
unionised workers by demographic group. Neither the EU-LFS nor the EU-SES include information on workers’ 
trade union membership. However, estimating regressions across demographic groups allows the 
straightforward merging of indicators based on different surveys. Importantly, the ESS provides a within-country 
variation of union density. We use the country-level data on union density from the OECD/AIS database as a 
robustness check.  

The potential effect of the trade union, however, might serve as a proxy for broader institutional labour 
protection. Thus, as a robustness check, we also use the Employment Protection Legislation (EPL) indicators 
provided by the OECD. In particular, the EPL indices cover the strictness of the regulation of open-ended and 
temporary contracts. We also calculate the difference between the two, which is sometimes used to capture a 
possible advantage of regular workers in labour protection (Högberg et al., 2019). 

Our final sample includes 13 countries covered by all required data: Belgium, the Czech Republic, Germany, 
Estonia, France, Greece, Hungary, Italy, Lithuania, the Netherlands, Romania, Spain, and Sweden.12 

 
10 The EU-SES data include 2-digit NACE (Statistical Classification of Economic Activities in the European Community) 
industry codes, much more granular than 1-digit codes available in the EU-LFS, 
11 This increases sample size and compensates for incomplete country coverage of the 2006 ESS. As trade union density 
changes rather slowly, the 2008 and 2010 data provide good proxy for 2006 outcomes. 
12 The EU-SES data are unavailable for Austria and Denmark. The EU-KLEMS data are unavailable for Bulgaria, Cyprus, 
Croatia, Ireland, Luxembourg, Malta, Poland, and Portugal. Slovenia was not covered in the 2006 EU-SES. The data quality 
for Slovakia drew concern because of outliers regarding technology adoption. For Latvia the data from IFR is scarce with 
respect to sectoral division of industrial robots.  
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2.4. Econometric methodology 

We estimate the following equation to assess the impact of technology adoption on the change in atypical 
employment: 

∆AEg,c = βSoft ∗ TDASoftg,c
+ βRobots ∗ TDARobotsg,c

+ βRobotsUnion
∗ TDARobotsg,c

∗ TradeUniong,c

+ δXg,c + 𝛼𝑎𝑔𝑒𝑔,𝑐
+ 𝛼𝑔𝑒𝑛𝑑𝑒𝑟𝑔,𝑐

+ 𝛼𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑔,𝑐
+ εg,c (3) 

where ∆AEg,c represents the change in the share of involuntary atypical employment in total employment of a 
demographic group g in the country c between 2006 and 2018. Xg,c is a matrix of the selected covariates. We 
use LASSO regularisation as a variable selection model, using Ahrens et al. (2020) method that corrects for the 
possible omitted variable bias in standard LASSO procedures13. We control for country, gender, and age fixed 
effects in the simplest specification. Based on the LASSO results, we additionally control for the share of 
migrants, the employment share of small firms (up to 9 employees); the share of manufacturing employment 
(all in 2006), change in value added per worker between 2008-2016, exposure to the 2008 financial crisis (output 
change between 2008 and 2009), and the share of workers in trade unions. To contextualise the impacts on 
atypical employment against the overall labour market effects, we also estimate the effects of automation 
technologies on employment rate change between 2006 and 2018, using the same specifications as for atypical 
employment. 

Technology adoption may be endogenous to labour market shocks or driven by other, potentially unobserved 
factors affecting involuntary atypical employment (e.g. exposure to Chinese competition or changes in firms’ 
market power). Thus, the OLS estimates of equation (3) may be biased. To account for the endogeneity bias, we 
employ GMM-IV estimation. For both types of automation technologies, we follow the state-of-the-art 
methodology of “technology frontier” instrument previously applied in several studies of automation (Acemoglu 
& Restrepo, 2020; Albinowski & Lewandowski, 2024; Antón et al., 2023; Bachmann et al., 2024; Damiani et al., 
2023; Dauth et al., 2021; Nikolova et al., 2024), slightly modifying its construction. Since Acemoglu and Restrepo 
(2020), researchers have often used a fixed set of countries to summarise information on technology adoption 
in high-income countries by industry. However, we apply a more flexible selection: for each sector, we identify 
the technology leader with the highest level of technology adoption among countries with available data. For 
example, Japan is the leader in industrial robots applied in computer manufacturing. Appendix Tables A1-A2 
present detailed information on the instrument selection. We refer to our instrument as the technological 
leaders instrument:  

AP_Tech𝑖
𝐼𝑉 = max

𝑐 ∈𝐶
AP_Tech𝑖,𝑐  (4) 

 
13 We employed an IV-LASSO approach to preserve the instrumental variable structure. The candidate variables considered 
by LASSO included: the share of natives working in the selected demographic group in 2006; the share of employees in 
small firms (fewer than 20 employees) in 2006; industry shifters; the share of employees in manufacturing; exposure to 
the 2008 financial crisis; trade union density; and changes in age-, education-, and gender-fixed effects. The final models 
reported below include only the variables retained in the optimal specification. Details of the LASSO procedure are provided 
in the Online Appendix. 
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The instrument variable (max AP_Tech) is reweighted by the same demographic group specialisation in routine 
tasks as the treatment variable. Online Appendix Figure OA1 shows a strong and significant correlation between 
the technology variables and their instruments, sufficient for the relevance assumption. In the case of software 
and databases, only six out of 21 sectoral technology leaders were out-of-sample, while 10 of 21 of the sectoral 
leaders were in the Netherlands. For industrial robots, nine out of 16 sectoral technology leaders were out-of-
sample, while four were in the Netherlands. Since the overrepresentation of the Netherlands in the instrument 
can contaminate the results, as a robustness check, we re-estimate our model with an instrument based on a 
set of out-of-sample European countries (Austria, Denmark, Finland, and Slovenia), which served to construct 
instruments in other studies (Acemoglu & Restrepo, 2020; Doorley et al., 2023). 

Our identification strategy relies on the exogenous shares in routine tasks of particular demographic groups. At 
the same time, we treat the technology shocks as endogenous and instrument them in line with equation (4). 
Following Borusyak et al. (2025) recommendations for testing the assumptions behind the shift-share design, 
we (1) calculate the Rotemberg weights attributed to each industry, (2) report which industries were most 
decisive in explaining the variance of the endogenous variables, and (3) test the exogeneity of the shares used 
to construct the shift-share treatment variable.  

These tests show that our estimates are robust to shares’ exogeneity and that our results are not driven by a 
selective subset of industries, validating our identification assumptions. The Rotemberg weights for industrial 
robots, software, and databases (Appendix Tables A4-A5) show that most sectors contribute to the variation in 
technology adoption.14 Moreover, technology adoption is generally well-balanced regarding standard 
demographic group characteristics (Appendix Table A6). However, some significant differences between men 
and women and less- and more educated individuals emerge, especially for robot exposure. Therefore, we will 
control for subgroup fixed effects in our regression to minimise the influence of these confounders. Finally, 
involuntary atypical employment has not changed differently in groups with higher initial specialisation in 
routine tasks – the correlation between the shares and the change in involuntary atypical employment is 
statistically insignificant (Appendix Table A7). These tests show we can credibly exploit the reweighted industry-
shock variation in technology adoption. 

To assess the potential moderating role of trade unions, we interact task displacement variables with the 
moderator – the demographic group’s union density. Our approach is similar to that of Bryson et al. (2013) or 
Bachmann et al. (2024), though implemented at the demographic group rather than the worker level. 

Finally, we calculate a counterfactual scenario to evaluate the economic significance of automation as a driver 
of atypical employment. Using the GMM-IV estimated coefficients, we calculate the linear prediction of the 
atypical employment change at a demographic group level (baseline). Then, we predict the same outcome, 
assuming no technological level change between 2006 and 2018. Comparing this counterfactual scenario – the 
change in atypical employment if technology adoption remained at the 2006 level – with the baseline scenario 
isolates the contribution of software, databases, and industrial robots to changes in involuntary atypical 
employment shares in European countries between 2006 and 2018.  

 
14 For industrial robots, we can attribute at maximum 20% to manufacturing of machinery equipment. For software and 
databases, we can attribute at maximum 10% to manufacture of basic metals, fabricated metal products, 
computer/electronic/optical products, electrical equipment, and machinery.  
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3. Results  
3.1. Descriptive evidence  

Table 1 presents descriptive statistics of the variables used. On average, the share of workers in atypical 
employment increased by 2.05 percentage point (around a 20% increase) between 2006 and 2018. The 
incidence of involuntary fixed-term contracts and underemployment increased most notably, with fixed-term 
employment growing by 31.3%. At the same time, the number of involuntary part-time jobs increased by only 
2.8%. Regarding the penetration of automation technologies, it was slightly larger and more diverse across 
demographic groups in the case of robots. The sample is balanced in terms of gender. Most workers are 
between 40 and 59 years old and have a middle education level. 

Table 1. Descriptive Statistics 

 Mean Standard Deviation 
Change 
(in %) 

Observations 

Dependent Variable      

Change in involuntary atypical employment 2.05 5.01 19.2 390 

Change in involuntary part-time employment 0.08 2.47 2.8 390 

Change in involuntary fixed-time employment 0.78 2.1 31.3 390 

Change in underemployment 0.79 4.13 11.3 390 

Task Displacement     

Penetration of Industrial Robots 0.17 0.23 - 390 

Penetration of Software & Databases 0.12 0.14 - 390 

Control Variables    390 

Gender: woman 0.46 0.50 - 390 

Basic education 0.23 0.42 - 390 

Secondary education 0.51 0.50 - 390 

Tertiary education 0.26 0.44 - 390 

Age: 20-29 0.18 0.38 - 390 

Age: 30-39 0.26 0.44 - 390 

Age: 40-49 0.29 0.45 - 390 

Age: 50-59 0.22 0.41 - 390 

Age: 60+ 0.06 0.23 - 390 

Initial atypical employment 10.73 8.7 - 390 

Manufacturing share 27.1 13.4 - 390 

Financial crisis exposure  -7.41 5.95 - 390 

Trade Union density 16.8 17.8 - 390 

Small firms’ employees share in 2006 20.4 10.4 - 390 

Natives in 2006 91.4 6.9 - 390 

Note: Observations weighted with their within-country employment shares (each country has equal weight in the analysis).  

Source: Own elaboration based on EU-SES, EU-LFS, ESS, EU-KLEMS and IFR data.  
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Between 2006 and 2018, involuntary atypical employment increased among most demographic groups. Among 
men, such an increase was particularly pronounced among those aged 20-29, while among older workers (aged 
60 or more), the incidence of atypical employment declined in several countries (Figure 1). Among women, the 
incidence of atypical employment has increased among most groups, except for women aged 60 or more 
(Figure 2). For both men and women, education was not a factor clearly distinguishing trends in atypical 
employment, although higher-educated workers recorded a lower incidence of atypical employment than the 
other groups (Figures 1-2).  

Figure 1. Change in involuntary atypical employment by country and demographic group among men 

 

Source: Own calculations based on EU-LFS data. 
Figure 2. Change in involuntary atypical employment by country and demographic group among women 

 
Source: Own calculations based on EU-LFS data.  



13 

 

Across countries and demographic groups, a positive correlation exists between the change in employees’ share 
in atypical employment and industrial robot penetration and a negative relationship between software and 
database penetration and change in involuntary atypical employment (Figure 3). However, both correlations are 
statistically insignificant. 

Figure 3. Technology penetration and change in atypical employment

 
Source: Own elaboration based on EU-LFS data 

3.2 The effects of software, databases and industrial robots on atypical and total 
employment 

We start by discussing the OLS results. We find a significant, positive association between task displacement 
with industrial robots and change in involuntary atypical employment (Table 2). We also find a significant 
moderating effect of trade unions, as evidenced by the negative coefficient on the interaction between robots 
and trade union density.15 At the same time, the association between software and databases and atypical 
employment is insignificant. We also estimate a model with interaction between software and databases and 
trade union density, which proved insignificant, so we do not include it for simplicity. These results are available 
upon request. 

As the OLS results might be biased, we focus on the GMM-IV results from now on. For industrial robots, the 
GMM-IV results are statistically significant and quantitatively similar to the OLS results, albeit slightly smaller 
(Table 2). The interaction between robots and trade union density is significant at the 10% level (column 5 of 
Table 2), suggesting that unions could have played a role in mediating the impact of robots on working 

 
15 We estimated logistic regression explaining the probability of trade union membership controlling for gender, age, 
education, size of the firm, migration status and country- industry and occupation fixed effects. It shows significant cross-
country differences in the likelihood of trade union membership that cannot be that attributed to industrial and 
occupational structure (Appendix Figure A1). 
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conditions. The GMM-IV results for software and databases are slightly larger in absolute terms than the OLS 
results, but noisy and not statistically significant at conventional levels (Table 2). The IHS transformation of 
technological variables complicates assessing the strength of these estimated effects. Therefore, we discuss 
the economic significance in subsection 3.4 based on the counterfactual historical analysis. 

To locate the effects of automation on atypical employment in the broader pattern of its labour market effects, 
we re-estimate our models for the employment rate change between 2006 and 2018. Again, the GMM-IV results 
show contrasting effects of robots, software and databases: the latter increased total employment rates 
(significantly in most specifications), while the former had no significant impact (Table 2). These patterns are 
consistent with previous findings that, in European countries, robots had moderate or neutral effects on 
employment (Bachmann et al., 2024; Dauth et al., 2021; Klenert et al., 2023), contrasting with adverse impacts 
in the US (Acemoglu & Restrepo, 2020). They are also in line with evidence of ICT’s benign effects on labour 
market outcomes in Europe (Albinowski & Lewandowski, 2024).  

Combining our insignificant results for total employment rates and the positive effect on atypical employment 
share suggests that automation with industrial robots deteriorates job quality, as measured with the incidence 
of involuntary atypical employment, rather than quantity. Our findings complement previous evidence of robots 
reducing job quality as measured by work intensity (Antón et al., 2023) and work meaningfulness and autonomy 
(Nikolova et al., 2024). Trade union density appears to mitigate the effects of robots on the composition of jobs 
in atypical and typical employment forms, but not on the total employment rate. At the same time, adopting 
software and databases has more beneficial effects on the labour market as it increases the employment rate 
while having no impact on atypical employment shares. 

Next, we provide additional evidence on the mitigating role of trade unions. Countries with higher trade union 
density may generally exhibit more stringent labour market institutions, such as employment protection 
legislation that may discourage firms from hiring workers on non-standard contracts. Therefore, we use 
alternative measures of labour market institutions and check if they exhibit the same mediating role as trade 
union density in our baseline specifications. Specifically, we use the OECD Employment Protection Legislation 
(EPL) index for open-ended contracts (column 2 of Table 3), EPL for temporary contracts (column 3) and the 
difference between EPL for open-ended and temporary contracts (column 4). We also use country-level trade 
union density (column 5) instead of demographic-group-level union density calculated with the ESS data. 
Column 2 of Table 3 repeats our main specification (column 5 of Table 2).16 Appendix Table A3 compares these 
indicators for countries studied and shows their cross-country correlations with trade union density based on 
the ESS. 

These additional results show that our findings are specific to trade unions. Using the country-level trade union 
density (column 2 of Table 3) provides results closely resembling our baseline results. At the same time, we do 
not find significant results for any of the EPL measures, neither in OLS nor IV regressions (columns 3-5 of Table 
3). In line with our conceptual framework, we interpret these findings as suggestive evidence that trade unions 
can protect workers from the automation-driven increases in involuntary non-standard work arrangements.  

 
16 We omit Romania due to the missing EPL data. 
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Table 2. The effect of industrial robots, software and databases on the incidence of atypical jobs and 
employment, 2006-2018 

 (1) (2) (3) (4) (5) 

Atypical employment rate change 
 OLS OLS OLS OLS OLS 

Software and Databases Displacement -1.13 -0.91 -0.92 -0.97 -3.99 
 (2.05) (2.1) (2.1) (2.09) (2.57) 

Industrial Robots Displacement 4.17** 3.58** 3.57** 3.27* 4.46** 

 (1.29) (1.25) (1.28) (1.27) (1.12) 

Industrial Robots Displacement x Trade Union density     
-0.15* 
(0.05) 

 GMM-IV GMM-IV GMM-IV GMM-IV GMM-IV 
Software and Databases Displacement -2.65 -1.83 -1.85 -3.08 -5.52 

 (2.07) (2.16) (2.23) (2.6) (3.70) 
Industrial Robots Displacement 3.87** 3.07* 3.01* 3.14** 4.08*** 

 (1.25) (1.26) (1.21) (1.05) (1.13) 

Industrial Robots Displacement x Trade Union density     
-0.19 
(0.10) 

Employment rate change 
 GMM-IV GMM-IV GMM-IV GMM-IV GMM-IV 

Software and Databases Displacement 13.77** 10.43* 9.73* 8.17* 10.51* 
 (4.9) (4.36) (4.01) (3.53) (4.4) 

Industrial Robots Displacement -0.09 1.44 -0.82 -1.19 -2.08 
 (2.37) (2.44) (2.95) (2.6) (2.68) 

Industrial Robots Displacement x Trade Union density 
    0.18* 

(0.09) 
Native workers share (2006) No Yes Yes Yes Yes 

Small firm share (2006) No Yes Yes Yes Yes 
Industry shifters No No Yes Yes Yes 

Manufacturing share (2006) No No No Yes Yes 
Financial crisis No No No Yes Yes 

Mean of Software and Databases 0.12 0.12 0.12 0.12 0.12 
Mean of Industrial Robots 0.17 0.17 0.17 0.17 0.17 

Mean of involuntary atypical employment share change 2.05 2.05 2.05 2.05 2.05 
Mean of total employment rate change 1.42 1.42 1.42 1.42 1.42 

Kleibergen-Paap rk Wald F-statistic 10.23 9.79 9.56 11.00 9.42 
Observations 390 390 390 390 390 

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard errors (clustered at the country level) in parentheses. We use standardised 
weights, based on the EU-LFS employment structure in 2018, that give each country equal weight. The first stage F-statistics 
for software and databases first-stage was 44.41, for industrial robots 164.97 and for interaction between industrial robots and 
trade union density was 59.02. All models include controls for country, gender, education and age group fixed effects, and trade 
union density.  
Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS, ESS and IFR data. 
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Table 3. The effect of industrial robots and software and databases on the incidence of atypical jobs, with 
alternative labour protection measures, 2006-2018 (GMM-IV estimates) 

 
(1) (2) (3) (4) (5) 

` 

Baseline 
(ESS trade 

union 
density) 

OECD trade 
union density 

EPL for open-
ended 

contracts 

EPL for 
temporary 
contracts 

EPL 
difference 

open-ended 
vs. temporary 

contracts 

Software and Databases 
Displacement 

-4.77 -3.90 -2.27 -3.05 -2.53 

(3.30) (3.22) (2.28) (2.04) (2.06) 

Industrial Robots Displacement 
4.76*** 3.01* 1.03 2.23 4.17** 

(1.68) (1.45) (3.04) (2.62) (1.27) 

Industrial Robots Displacement 
x Trade Union Density 

-0.17 -0.24** 
   

(0.10) (0.12) 
   

Industrial Robots Displacement 
x EPL for open-ended contracts 

  
0.98 

  

  
(0.98) 

  

Industrial Robots Displacement 
x EPL for temporary contracts 

   
1.31 

 

   
(1.84) 

 

Industrial Robots Displacement 
x EPL difference between open-
ended and temporary contracts 

    
-0.16 

    
(0.69) 

First Stage Kleibergen-Paap F-
Statistic 

9.42 7.48 9.17 7.91 7.78 

Mean of outcome 2.35 2.35 2.35 2.35 2.35 

Mean of Software and 
Databases 

0.13 0.13 0.13 0.13 0.13 

Mean of Industrial Robots 0.17 0.17 0.17 0.17 0.17 

Observations 360 360 360 360 360 

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard errors (clustered at the country level) in parentheses. We use standardised 
weights, based on the EU-LFS employment structure in 2018, that give each country equal weight. All models follow the 
specification of column (5) in Table 2 and include controls for country, gender and age group fixed effects, trade union density, 
native workers share (2006), small firms workers share (2006), industry shifters, manufacturing share (2006), and financial 
crisis.  
Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS, ESS and IFR data. 

The Online Appendix presents a range of robustness checks. First, we ran a placebo test with other types of 
modern capital, specifically, the exposure to net capital stock in brand intellectual property and net capital stock 
in training. We find no significant effects for these variables (Online Appendix Table OA1), which suggests that 
our results are specific to automation. Second, we estimated a battery of leave-one-out regressions omitting 
one country at a time, finding that our results are generally stable across sub-samples (Online Appendix Figure 
OA1). Third, we calculated the instrument using out-of-sample European countries instead of our preferred 
technological leader approach. The results are robust to this change (Online Appendix Table OA2). Finally, we 
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verified the correlation between our technological shocks and a potential confounder, migration flows, finding 
no significant correlation between them (Online Appendix Figure OA2 and Online Appendix Table OA3). 

3.3 The effects of software, databases and industrial robots on fixed-term, part-time 
employment and underemployment  

To shed more light on the potential channels of automation’s impact on involuntary non-standard employment, 
we re-estimate our models for particular sub-categories of involuntary atypical employment – involuntary fixed-
term, involuntary part-time and underemployment. For brevity, we focus on the GMM-IV specifications with 
interactions between robots and trade union density (as in column 5 of Table 2). 

We find only a significant effect on involuntary fixed-term employment (Table 4). The effects of robots on 
involuntary part-time and underemployment are both positive but insignificant at conventional levels. These 
results are consistent with our conceptual framework, suggesting that automation might increase the use of 
atypical contracts that enable firms to adjust labour input more flexibly, such as fixed-term contracts (Caggese 
& Cuñat, 2008; Fernandes & Ferreira, 2017; Goux et al., 2001). The effects of software and databases on 
particular categories of non-standard employment are insignificant, in line with the results on the broader 
category of atypical jobs.  

Table 4. Technology exposure and involuntary part-time, fixed-term employment and underemployment, 
2006-2018 

  
Involuntary fixed-

term 
Involuntary part-time  Underemployment 

  GMM-IV GMM-IV GMM-IV 

Software and Databases Displacement -2.04 -2.23 -3.48 

 (1.53) (2.39) (3.10) 

Industrial Robots Displacement 2.07* 1.82 1.96 

 (0.82) (1.22) (1.55) 

Industrial Robots Displacement x Trade Union -0.10** 0.01 -0.08 

 (0.04) (0.03) (0.05) 

First Stage Kleibergen-Paap F-Statistic  39.9 39.9 39.9 

Mean of outcome 0.78 0.08 0.79 

Mean of Software and Databases 0.12 0.12 0.12 

Mean of Industrial Robots 0.17 0.17 0.17 

Observations 390 390 390 
Note: *** p<0.001, ** p<0.01, * p<0.05. Standard errors (clustered at the country level) in parentheses. We use standardised 
weights, based on the EU-LFS employment structure in 2018, that give each country equal weight. All models include controls 
for country, gender, education and age group fixed effects and trade union density, native workers share (2006), small firms 
workers share (2006), industry shifters, manufacturing share (2006), and financial crisis.  
Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS, ESS and IFR data. 
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3.4 The contribution of technology to atypical employment change  
Next, we use a counterfactual historical decomposition to quantify the economic significance of the estimated 
effects. First, we use the IV coefficients from column 5 of Table 2 to predict the change in involuntary atypical 
employment between 2006 and 2018. Second, we calculate an alternative prediction assuming that the 
penetration with a given type of automation remained at the 2006 level. Since our penetration measures are 
adjusted for sector-specific growth, it is equivalent to assuming investment levels required to retain the 
automation capital intensity from 2006. The difference between these two predictions allows for disentangling 
technology’s contribution to changes in atypical employment between 2006 and 2018. Finally, for robots we 
predict a third scenario assuming that trade union density equals zero in all countries, which allows quantifying 
the mediating impact of unions. We use estimates for both robots, and software and databases for consistency 
and completeness, though the latter are insignificant and should be interpreted cautiously. 

The total contribution of automation to atypical employment share changes between 2006 and 2018 varies 
from about a 0.14 percentage point decline in Sweden to more than a 1.50 percentage point increase in 
Germany and the Czech Republic (Table 5). The contributions are generally larger for robots and in countries 
that recorded larger growth in robot adoption. The mediating effect of trade union density emerges as an 
important factor behind the cross-country differences in the contribution of automation to atypical 
employment. Trade unions have alleviated the impact of robots on atypical employment in most countries, 
especially in highly unionised countries such as the Netherlands and Belgium, where trade union density is high 
(Table 5). Comparing the change in atypical employment share that we attribute to automation with the actual 
change in particular countries between 2006 and 2018 shows that in most countries, the contribution of 
automation was relatively small. 

Table 5. Estimated contribution of technology adoption and trade unions’ mitigation effect to the change in 
the share of workers in atypical employment, 2006-2018 

Country 
Industrial 
Robots 

Contribution 

Trade Unions 
Mitigating 

Effect 

Software & 
Databases 

Contribution 

Total 
Contribution of 

Automation 

Recorded Change in 
Atypical Employment 

Share 

Lithuania 0.91  -0.13  -0.90  -0.12  -2.48  

Hungary 1.34  -0.28  -1.33  -0.27  -1.85  

Romania 0.96  -0.43  -0.33  0.20  -1.56  

Italy 1.29  -0.51  -0.63  0.15  -0.12  

Estonia 0.93  -0.15  -0.50  0.29  0.19  

Czech Republic 3.00  -0.53  -2.14  0.33  0.50  

Sweden 0.71  -1.15  -0.02  -0.46  1.06  

Germany -0.26  0.14  -0.53  -0.65  2.93  

Belgium 1.81  -2.21  -0.52  -0.93  3.84  

Spain 0.53  -0.06  -0.50  -0.02  3.92  

France 1.05  -0.23  -0.89  -0.06  4.66  

Netherlands 2.69  -1.21  -0.78  0.70  5.73  

Greece 0.85  -0.09  -0.08  0.67  9.87  
Note: Countries are sorted by the recorded change in typical employment share between 2006 and 2018. 
Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS, ESS and IFR data.  
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5 Conclusions and policy implications 
This paper examined how different types of automation technologies—industrial robots and software and 
databases—affect employment outcomes and job quality across 13 European countries between 2006 and 
2018. Using sectoral data on technology adoption and microdata from the EU Labour Force Survey, we used an 
instrumental variable approach to evaluate their impact on the incidence of involuntary atypical employment—
a proxy for job precariousness. Our approach distinguished between robots as generally labour-saving 
technologies and software and databases as rather labour-augmenting technologies and explored how labour 
market institutions mediate their effects. 

Consistent with the conceptual framework, we find that software and databases—representing digital, labour-
augmenting technologies—have positive employment effects and neutral impacts on atypical work. By 
enhancing workers’ productivity in non-routine and cognitive tasks, software complements rather than 
substitutes labour, strengthening rather than eroding bargaining power. In contrast, industrial robots—
representing labour-saving automation—exert neutral effects on total employment but increase the share of 
involuntary atypical employment, particularly fixed-term contracts. This asymmetry reflects firms’ search for 
flexibility in adjusting labour inputs under technological change. When robots replace workers in performing 
routine manual tasks, firms may rely more heavily on temporary contracts to manage production volatility, while 
workers, facing weakened bargaining power and reduced outside options, increasingly accept precarious work. 
Thus, in European countries we studied, automation driven by robots affects the quality rather than the quantity 
of employment. Our findings complement previous evidence that robots can reduce job quality in such 
dimensions as work intensity (Antón et al., 2023), meaningfulness, and autonomy (Nikolova et al., 2024). 

We have also found evidence that institutional factors shape these outcomes. Trade union density significantly 
mitigates the impact of robots on the atypical employment share, consistent with theories emphasising 
collective bargaining as a mechanism to defend job quality and distribute technological gains more equitably 
(Bryson et al., 2013; Devicienti et al., 2018). By contrast, employment protection legislation (EPL) shows no 
moderating effect, suggesting that legal employment rigidities are less effective in protecting workers from 
automation-induced precarity. This finding aligns with the evidence that EPL may reinforce dualism by 
prompting firms to shift adjustment pressures toward temporary workers (Boeri & Garibaldi, 2007).  

Our historical decompositions show that robot adoption accounts for an estimated 1-2 percentage point 
increase in atypical employment between 2006 and 2018 in countries with high automation diffusion, 
particularly in Central and Eastern Europe, Greece, and the Netherlands. However, these contributions are small 
compared with the changes recorded in 2006-2018 and with the 2018 atypical employment shares in the 
countries studied. Hence, while automation contributed to rising precarity, it is not the dominant driver. Notably, 
without union presence, the adverse impact of robots would have been considerably stronger, underscoring the 
protective role of collective bargaining. Hence, our results suggest that institutional capacity rooted in collective 
representation, rather than regulatory strictness, shapes the extent to which automation undermines job quality. 

From a policy perspective, these results suggest that strengthening collective bargaining coverage and 
promoting social dialogue can help workers adjust to technological change while maintaining job quality. In 
contrast, relying solely on stricter employment protection may fail to address the growing divide between secure 
and precarious employment. Ensuring that the gains from automation are broadly shared requires policies that 
reinforce both workers’ bargaining power and their capacity to adapt to new technologies.  
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Appendix: Additional tables and figures 
Table A1. The selection of countries to Software & Databases technological leaders instrument 

Country Industry  Gross Output growth Software & Databases growth Employment growth 
Denmark* A 4.7% 142.3% 16.7% 
The Netherlands B -39.7% -9.0% 0.0% 
Denmark* C 9.8% 116.5% -16.6% 
The Netherlands C10-C15 20.9% 95.3% 1.4% 
France C16-C18 -15.5% 40.3% -33.2% 
Denmark* C19-C23 64.5% 227.8% 9.1% 
The Netherlands C24-C28 25.3% 118.0% -0.4% 
France C29-C32 7.9% 60.3% -15.9% 
Spain D 22.4% 225.0% -8.8% 
Spain D-E 17.2% 159.6% 26.6% 
The Netherlands E 41.9% 211.1% 9.7% 
The Netherlands F 14.9% 99.3% -19.1% 
Austria* G 16.1% 74.7% 9.6% 
Sweden H_J 44.6% 236.1% 16.6% 
The Netherlands I 16.1% 67.2% 43.1% 
Denmark* K 4.4% 114.1% -2.5% 
The Netherlands L-N 34.9% 198.9% 22.9% 
The Netherlands O 14.9% 79.8% 7.6% 
The Netherlands P 11.8% 91.9% 6.8% 
The Netherlands Q 31.5% 176.2% 15.0% 
Denmark* R-S 3.7% 113.0% 11.4% 
     

Note: The countries marked with (*) indicate countries out-of-sample 

Source: Own elaboration based on EU-KLEMS data  
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Table A2. The selection of countries for the Industrial Robots technological leaders Instrument 

Country Industry Gross Output growth 
Stock of Industrial 
Robot growth Employment growth 

The Netherlands A-B 14% 2369% 17% 
Sweden C 18% 2395% 1675% 
The Netherlands C10-C12 23% 17% -96% 
The Netherlands C10-C15 21% 126% 52% 
Denmark* C13-C15 -20% 296% 1538% 
Italy C16-C18 -21% 571% -60% 
Austria* C19-C23 51% 109% 722% 
Austria* C24-C25 26% 531% -80% 
Japan* C26 -3% 317% -94% 
The Netherlands C27 12% 2650% -27% 
Sweden C28 -5% 342% 18% 
Slovenia* C29-C30 57% -17 -43% 
Slovenia* D 21% 1717% -7% 
Denmark* E -7% - -9% 
Slovenia* F -24% 1200% -9% 
Austria* P 18% 670% 32% 

Note: The countries marked with (*) indicate countries out-of-sample 

Source: Own elaboration based on EU-KLEMS data. 

 

Table A3. Descriptive statistics on institutional measures of labour protection 

Country 
Union density 

(%, ESS) 
Union density 

(%, OECD) 
EPL Open-ended 
contracts (OECD) 

EPL Temporary 
contracts (OECD) 

Belgium 43.1 53.6 1.73 2.25 
Czech Republic 7.1 17.4 3.26 1.44 
Germany 13.5 19.8 2.60 1.13 
Estonia 6.6 12.0 1.81 3.00 
Spain 7.6 16.4 1.96 2.47 
France 6.6 22.6 2.50 3.13 
Hungary 7.22 18.0 1.59 1.25 
Italy 17.0 34.0 2.93 2.00 
Lithuania 5.79 9.3 2.63 2.38 
The Netherlands 20.1 19.4 3.24 0.94 
Romania 15.9 36.0 - - 
Sweden 58.4 67.0 2.45 0.81 
Cross-country 
correlation with 
union density based 
on ESS 

1 0.94 -0.07 -0.42 

Source: Own elaboration based on ESS and OECD data. 

 
17 Initial value of the operational stock of industrial robots in 2006 equal to 0.  
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Table A4. Shift-share Rotemberg industry weights for industrial robots 

Industry Rotemberg Weight 

 Manufacture of machinery and equipment n.e.c. 0.202 

 Manufacture of food products; beverages and tobacco products 0.131 

 Manufacture of furniture and other manufacturing 0.127 

 Manufacture of basic metals and fabricated metal products 0.124 

 Mining and quarrying 0.111 

 Printing and reproduction of recorded media 0.110 

 Manufacture of motor vehicles and other transport equipment 0.093 

 Manufacture of textiles, wearing apparel, leather and related products 0.045 

 Manufacture of wood and paper products 0.042 

 Education 0.015 

Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS and IFR data. 
 

Table A5. Shift-share Rotemberg industry weights for software & databases 

Industry 
Rotemberg 
Weight 

 Manufacture of basic metals, fabricated metal products, computer/electronic/optical products, 
electrical equipment, and machinery 

0.109 

 Manufacture of motor vehicles, other transport equipment, furniture, and other manufacturing 
0.108 

 Transportation, storage, information, and communication 
0.100 

 Manufacture of coke, refined petroleum, chemicals, pharmaceuticals, rubber, plastic, and non-metallic 
mineral products 

0.076 

 Mining and quarrying 
0.074 

 Electricity, gas, steam, air conditioning supply, water supply, sewerage, waste management 
0.073 

 Education 
0.066 

 Human health and social work activities 
0.065 

 Arts, entertainment, recreation, and other service activities 
0.064 

 Real estate, professional/scientific/technical activities, administrative and support services 
0.063 

 Financial and insurance activities 
0.045 

 Construction 
0.043 

 Manufacture of wood and paper products, printing and reproduction of recorded media 
0.038 

 Manufacture of food products, beverages, tobacco, textiles, wearing apparel, and leather products 
0.037 

 Wholesale and retail trade; repair of motor vehicles and motorcycles 
0.022 

 Accommodation and food service activities 
0.015 

Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS and IFR data. 
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Table A6. Treatment balance across demographic group characteristics 

 Software & Databases Treatment Industrial Robots Treatment 
Gender (Women base category)   

Men 
-0.007 
(0.016) 

-0.102*** 
(0.022) 

Age (20-29 base category)   

30-39  
0.015 

(0.0149) 
0.051 

(0.027) 

40-49  0.018 
(0.0148) 

0.050 
(0.027) 

50-59  
0.018 

(0.0154) 
0.015 

(0.025) 

60+  
-0.010 

(0.0163) 
-0.022 
(0.026) 

Education (Higher Education base category)  

Low Education  
-0.074*** 
(0.017) 

0.125*** 
(0.030) 

Middle Education  
-0.016 
(0.016) 

0.121*** 
(0.028) 

Controls 
Native share (2006), Share of small firms (2006), Industry shifters, Share of 
demographic group in manufacturing, Financial crisis exposure 

 Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS and IFR data. 

 
Table A7. Correlation between the outcome and demographic group specialisation in routine tasks shares 

 Change in Involuntary atypical employment share  

Routine task specialization  Industrial Robots Software & Databases  

Routine task specialization 5.421 5.222 

  (6.291) (6.862) 

Controls 
Gender, country, age fixed effects, Native share (2006), Share of small firms (2006), 

Industry shifters, Share of demographic group in manufacturing, Financial crisis 
exposure 

Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS and IFR data. 
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Figure A1 Predicted probability of trade union membership, by country 

 

Notes: controlling for gender, age, education, size of the firm, migration status, and country- industry and 
occupation fixed effects. 

Source: Own calculations based on ESS data 
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Automation, Trade Unions and Atypical Employment 

Online Appendix 

LASSO Selection Method 
A large group of variables may affect the change in involuntary atypical employment change. In this 
multidimensional setting and small sample, we used IV-LASSO (Instrumental Variables, Least Absolute 
Shrinkage and Selection Operator), proposed by Ahrens et al. (2020). The first part of obtaining IV-LASSO 
selection is to set up the list of possible instruments and control variables to be placed in the model. LASSO 
uses the algorithm, similar to the idea of optimization under constraints – minimize the residual squared errors, 
conditional on the coefficients sum. In practice, the model values “economic significance model” – variables 
with little contribution to the model prediction are excluded during the estimation process. Consequently, using 
LASSO requires standardization of the controls and instruments to obtain coefficient results in the same scaling 
space.  

IV-LASSO first uses LASSO or Post-LASSO to select instruments that are most predictive of the endogenous 
regressors in the first stage, effectively shrinking the coefficients of weak or irrelevant instruments to zero. This 
step ensures that only the most relevant instruments are retained. In the second stage, the selected instruments 
are used in a standard 2SLS framework to obtain consistent and efficient estimates of the structural 
parameters. We further apply the final selection of variables to the model estimated via GMM.  

Robustness checks 

Placebo regression with alternative capital measures 

Our first robustness check verifies that the results attributed to technologies we focus on – robots, software 
and databases – are driven by these technologies rather than by general investment levels or modern 
managerial techniques that may correlate with investments in robots, software and databases. To this end, we 
use a placebo test. We regress the change in involuntary atypical employment against two different types of 
capital related to these other trends but not clearly associated with task displacement. Specifically, we use the 
exposure to net capital stock in brand intellectual property and net capital stock in training. We report only the 
results of the OLS estimation. Unfortunately, we cannot use the GMM-IV because the "technology-frontier" 
instrument is implausible for these forms of capital. Yet, it should not be a problem since the OLS and GMM-IV 
baseline results were highly similar. 

We find no statistically significant results for the alternative measures of modern capital (Table 6). This 
suggests that our key findings are specific to automation, particularly industrial robots, and are not biased by 
parallel trends in other types of investment.  

  



31 

 

Table OA6. Robustness check – placebo regression 
 (1) (2) (3) (4) 
 OLS OLS OLS OLS 

 Atypical Employment Share 

Training -0.78 -0.58 -0.46 0.93 
 (1.81) (1.59) (1.61) (1.68) 

Brand Intellectual Property -1.96 -1.23 -1.33 -1.55 
 (1.17) (1.15) (1.15) (1.15) 

Country, gender, age group fixed effects Yes Yes Yes Yes 

Trade Union density  Yes Yes Yes Yes 

Native workers share (2006) No Yes Yes Yes 

Small firms workers share (2006) No Yes Yes Yes 

Industry shifters No No Yes Yes 

Manufacturing share (2006) No No No Yes 

Financial crisis No No No Yes 

Mean of outcome 2.05 2.05 2.05 2.05 

Mean of Training 0.01 0.01 0.01 0.01 

Mean of Brand Intellectual Property 0.01 0.01 0.01 0.01 

Observations 390 390 390 390 
Note: *** p<0.001, ** p<0.01, * p<0.05. Standard errors (clustered at the country level) in parentheses. We use standardised 
weights, based on the EU-LFS employment structure in 2018, that give each country equal weight.  
Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS, ESS and IFR data. 

Country leave-one-out regressions 

Here, we test the stability of our results to changing the country coverage. To this aim, we run 13 regressions, 
excluding one country at the time. We report the key GMM-IV coefficients for software and databases, industrial 
robots' impacts on atypical employment and the trade union moderating effect. 

For software and databases, there are no substantial differences between the leave-one-out coefficients and 
the baseline, insignificant estimate (top panel of Figure 6). However, the coefficient becomes statistically 
significant at the 5% level in subsamples without Greece or Lithuania.  

In the case of industrial robots, there are no significant differences across subsamples (middle panel of Figure 
6). However, if we excluded the Netherlands, the coefficient pertaining to the robots would not be statistically 
significant because of a large standard error. 

Finally, we find that the interaction between industrial robots and trade union density is also stable across 
subsamples, with two exemptions: excluding Sweden or Romania makes the interaction smaller in absolute 
terms and not statistically significant (bottom panel of Figure 6). These two countries represent the opposite 
ends of the distribution of trade union density in our sample.  
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Figure OA4. Country Leave-One-Out tests 

 

 

 
Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS, ESS and IFR data. 
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Out-of-sample European instrument  

Next, we change the construction of the instruments for technology measures. Instead of using technological 
leaders for particular sectors, we use an average for Austria, Denmark, Finland and Slovenia – a set of countries 
not included in our sample and used in past studies with similar specifications (Acemoglu and Restrepo, 2022; 
Doorley et al., 2023). 

The results are comparable to those using the instrument based on technological leaders (Table 7). We find 
lower first-stage f-statistics for the models estimated using out-of-sample European instruments. Thus, we 
prefer our baseline instrument when interpreting the results, as a larger first-stage f-statistic is associated with 
smaller standard errors of the endogenous variables' parameters. Importantly, changing the instrument does 
not affect our findings and their interpretation. 

Table OA7. Robustness check – out-of-sample European countries instrument 

  (1) (2) (3) (4) (5) 

  
GMM-

IV 
GMM-

IV 
GMM-

IV 
GMM-IV GMM-

IV 
Software and Databases Displacement -1.34 -0.77 -0.85 -2.50 -5.30 

 (3.43) (3.34) (3.37) (3.26) (3.72) 
Industrial Robots Displacement 3.95* 2.87 2.80 3.16 4.11* 
 (1.71) (1.73) (1.76) (1.76) (1.81) 

Industrial Robots Displacement x Trade Union 
    -

0.20** 
     (0.07) 
Country, gender, age group fixed effects Yes Yes Yes Yes Yes 
Trade Union density  Yes Yes Yes Yes Yes 
Native workers share (2006) Yes Yes Yes Yes Yes 
Small firms workers share (2006) Yes Yes Yes Yes Yes 
Industry shifters Yes Yes Yes Yes Yes 
Manufacturing share (2006) Yes Yes Yes Yes Yes 
Financial crisis Yes Yes Yes Yes Yes 
First Stage Kleibergen-Paap F-Statistic  37.9 36.3 35.7 44.5 25.5 
Mean of outcome 2.05 2.05 2.05 2.05 2.05 
Mean of Software and Databases 0.17 0.17 0.17 0.17 0.17 
Mean of Industrial Robots 0.20 0.20 0.20 0.20 0.20 
Observations 390 390 390 390 390 

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard errors (clustered at the country level) in parentheses. We use standardised 
weights, based on EU-LFS employment structure in 2018, that give each country equal weight.  
Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS, ESS and IFR data. 
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Correlation between migration and technology exposure  

Among the parallel phenomena in Europe during the studied period, migration might have acted as a confounder 
of our analysis. Migrants might be vulnerable in the new markets and take up professions below their skill level, 
often accepting poorer working conditions. Hence, we correlate the automation exposure measures to see if 
associated migration patterns could confound the obtained result. We use the change in the share of "natives" 
in the labour market as a measure of migration exposure. 

We find no correlation between the change in the share of native workers and the exposure to technology 
adoption. The share of variance in the technology exposure measures also indicates little association between 
migration and technology. Estimating the relationship between these variables, we also find no correlation 
between technology and migration (Table OA3). 

Figure OA5. Correlation between technology adoption and migration 
industrial robots exposure software & database exposure 

  

Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS, ESS and IFR data. 

Table OA8. The association between adoption of industrial robots and change in migration 

  (1) (2) (3) (4) 

  OLS OLS OLS OLS 
Migration Change 0.00 0.00 0.00 0.00 

 (0.00) (0.00) (0.00) (0.00) 
Country F.E. Yes Yes Yes Yes 
Gender F.E. Yes Yes Yes Yes 
Age group F.E.  Yes Yes Yes Yes 
Native workers share (2006) No Yes Yes Yes 
Small firms workers share (2006) No Yes Yes Yes 
Industry shifters No No Yes Yes 
Manufacturing share (2006) No No No Yes 
Financial crisis No No No Yes 
Mean of outcome 2.05 2.05 2.05 2.05 
Observations 390 390 390 390 

Source: own estimations based on EU-LFS, EU-SES, EU-KLEMS, ESS and IFR data. 


	Abstract
	1. Introduction
	2. Data and methodology
	2.1. Atypical employment definition
	2.2. The measurement of technological displacement
	2.3. Measures of labour market institutions
	2.4. Econometric methodology

	3. Results
	3.1. Descriptive evidence
	3.2 The effects of software, databases and industrial robots on atypical and total employment
	3.3 The effects of software, databases and industrial robots on fixed-term, part-time employment and underemployment
	3.4 The contribution of technology to atypical employment change

	5 Conclusions and policy implications
	References
	Appendix: Additional tables and figures
	Automation, Trade Unions and Atypical Employment
	Online Appendix
	LASSO Selection Method
	Robustness checks
	Placebo regression with alternative capital measures
	Country leave-one-out regressions
	Out-of-sample European instrument
	Correlation between migration and technology exposure


